精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,点,点,若动点从坐标原点出发,沿轴正方向匀速运动,运动速度为,设点运动时间为秒,当是以为腰的等腰三角形时,直接写出的所有值__________________

【答案】秒或秒或

【解析】

分两种情况:为腰或为腰.分别作出符合条件的图形,计算出OP的长度,即可求出t的值.

解:如图所示,过点BBDx轴于点D,作BEy轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G

∵点B-88),点C-20),
DC=6cmBD=8cm,由勾股定理得:BC=10cm
∴在直角三角形COG中,OC=2cmCG=BC=10cm
OP=OG=

当点P运动到点F或点H时,BE=8cmBH=BF=10cm
EF=EH=6cm
OP=OF=8-6=2cm)或OP=OH=8+6=14cm),
故答案为:2秒,4秒或14秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,点P为直径BA延长线上一点,PD切⊙O于点D、过点BBHPH,点H为垂足,BH交⊙O于点C,连接BD,CD.

(1)求证:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是正方形ABCD内的一点,连PA、PB、PC.

(1)将PAB绕点B顺时针旋转90°PCB的位置(如图1).

设AB的长为a,PB的长为bb<a),求PAB旋转到PCB的过程中边PA所扫过区域(图1中阴影部分)的面积;

若PA=2,PB=4,APB=135°,求PC的长.

(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,点,点.

1)在图①中的轴上求作点,使得的值最小;

2)若是以为腰的等腰直角三角形,请直接写出点的坐标;

3)如图②,在中,,点(不与点重合)是轴上一个动点,点中点,连结,把绕着点顺时针旋转得到(即),连结,试猜想的度数,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.

(1)设a=2,点B(4,2)在函数y1、y2的图象上.

①分别求函数y1、y2的表达式;

②直接写出使y1>y2>0成立的x的范围;

(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,AA'B的面积为16,求k的值;

(3)设m=,如图②,过点AADx轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)的长方形ABCD中,E点在AD上,且BE2AE.今分别以BECE为折线,将ADBC的方向折过去,图(2)为对折后ABCDE五点均在同一平面上的位置图.若图(2)中,∠AED15°,则∠BCE的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点在边长为2的正方形内,连结,则的最小值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某西瓜经营户以/千克的价格购进一批小型西瓜,以/千克的价格出售,每天可售出千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价/千克,每天可多售出千克.另外,每天的房租等固定成本共元.该经营户要想每天盈利元,应将每千克小型西瓜的售价降低________元.

查看答案和解析>>

同步练习册答案