【题目】如图,在直角坐标系中,点,点,若动点从坐标原点出发,沿轴正方向匀速运动,运动速度为,设点运动时间为秒,当是以为腰的等腰三角形时,直接写出的所有值__________________.
【答案】秒或秒或秒
【解析】
分两种情况:为腰或为腰.分别作出符合条件的图形,计算出OP的长度,即可求出t的值.
解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G
∵点B(-8,8),点C(-2,0),
∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm
∴在直角三角形COG中,OC=2cm,CG=BC=10cm,
∴OP=OG= ,
当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,
∴EF=EH=6cm
∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),
故答案为:2秒,4秒或14秒.
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,点P为直径BA延长线上一点,PD切⊙O于点D、过点B作BH⊥PH,点H为垂足,BH交⊙O于点C,连接BD,CD.
(1)求证:BD平分∠ABH;
(2)若CD=2,∠ABD=30°,求⊙O的直径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长.
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,点,点.
(1)在图①中的轴上求作点,使得的值最小;
(2)若是以为腰的等腰直角三角形,请直接写出点的坐标;
(3)如图②,在中,,,点(不与点重合)是轴上一个动点,点是中点,连结,把绕着点顺时针旋转得到(即,),连结、、,试猜想的度数,并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;
(2)把t=2代入(1)中二次函数解析式即可.
详解:(1)v=at2的图象经过点(1,2),
∴a=2.
∴二次函数的解析式为:v=2t2,(0≤t≤2);
设反比例函数的解析式为v=,
由题意知,图象经过点(2,8),
∴k=16,
∴反比例函数的解析式为v=(2<t≤5);
(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,
∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分.
点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.
【题型】解答题
【结束】
24
【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)的长方形ABCD中,E点在AD上,且BE=2AE.今分别以BE、CE为折线,将A、D向BC的方向折过去,图(2)为对折后A、B、C、D、E五点均在同一平面上的位置图.若图(2)中,∠AED=15°,则∠BCE的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某西瓜经营户以元/千克的价格购进一批小型西瓜,以元/千克的价格出售,每天可售出千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价元/千克,每天可多售出千克.另外,每天的房租等固定成本共元.该经营户要想每天盈利元,应将每千克小型西瓜的售价降低________元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com