精英家教网 > 初中数学 > 题目详情
已知:如图,Rt△ABC,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点E为圆心,EC长为半径作⊙E交BC于点D.
(1)求证:斜边AB是⊙E的切线;
(2)设若AB与⊙E相切的切点为G,AC=8,EF=5,连DA、DG,求S△ADG
(1)过点E作EG⊥AB于点G,连接EA;
∵AF=EF,∠FEA+∠AEC=90°,∠AEC+∠EAC=90°,
∴∠FEA=∠FAE,
∴∠FAE=∠EAC,
∴AE为角平分线,
∴EG=EC,
∴斜边AB是⊙E的切线.

(2)连CG与AE相交于点H,由切线长定理得到:AC=AG=8,
由EF=AF=5;得FG=AG-AF=8-5=3,
在Rt△EFG中,根据勾股定理得:EG=CE=
EF2-FG2
=4,
∴AE=
AC2+CE2
=4
5
,又
1
2
AE•GH=
1
2
AG•GE,
∴GH=
AG•GE
AE
=
8
5
5
,GC=2GH=
16
5
5

∴DG=
(2CE)2-CG2
=
8
5
5

∴SRt△DGC=
1
2
DG•CG=
64
5

由Rt△DGC的面积为
64
5

∵CD是直径,
∴∠DGC=90°,
∵AG、AC是⊙E切线,
∴AE⊥CG,
∴∠EHC=90°=∠DGC,
∴DGAE,
∴S△AGD=S△DGE=
1
2
SRt△DGC=
32
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图.AD、AH分别是△ABC(其中AB>AC)的角平分线、高线,M点是AD的中点,△MDH的外接圆交CM于E,求证∠AEB=90°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙0的半径为1,圆心0到直线l的距离为2,过l上任一点A作⊙0的切线,切点为B,则线段AB的最小值为(  )
A.1B.
2
C.
3
D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O1和⊙O2外切于点A,直线BD切于⊙O1点B,交⊙O2于C、D,直线DA交于⊙O1点E.
求证:①∠BAC=∠ABC+∠D;
②连接BE,你还能推出哪些结论.(不再标注其他字母,不再添加辅助线,不写推理过程)写出五条结论即可.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为
CF
的中点,连接BE交AC于点M,AD为△ABC的角平分线,且AD⊥BE,垂足为点H.
(1)求证:AB是半圆O的切线;
(2)若AB=3,BC=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,BA=PC=2,则PD的长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的半径为4cm,直线l⊥OA,垂足为O,则直线l沿射线OA方向平移______cm时与⊙O相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA切OO于点A,PO交⊙O于C,延长PO交⊙O于点B,PA=AB,PD平分∠APB交AB于点D,则∠ADP=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E.
(1)判定直线DE与圆O的位置关系,并说明你的理由;
(2)求证:AC2=AD•AB;
(3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分)
①若CF⊥AB于点F,试讨论线段CF、CE和DE三者的数量关系;
②若EC=5
3
,EB=5,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案