精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,对角线AC、BD交于点O,DE∥AC,CE∥BD。
(1)试判断四边形OCED是何种特殊四边形,并加以证明.
(2)若∠OAD=300,F、G分别在OD、DE上,OF=DG,连结CF、CG、FG, 判断△CFG形状,并加以证明.
(1)菱形,证明见解析;(2)等边三角形,证明见解析.

试题分析:(1)根据矩形性质求出OC=OD,根据平行四边形的判定得出四边形OCED是平行四边形,根据菱形判定推出即可;
(2)判断出△OCD和△CDE是等边三角形,根据等边三角形的性质可得∠COD=∠CDG=60°,再利用“边角边”证明△COF和△CDG全等,根据全等三角形对应边相等可得CF=CG全等三角形对应角相等可得∠DCG=∠OCF,再求出∠FCG=60°,然后判断出△CFG是等边三角形.
试题解析:(1)证明:∵四边形ABCD是矩形,
∴AC=2OC,BD=2OD,AC=BD,
∴OD=OC,
∵DE∥AC,CE∥BD,
∴四边形OCED是菱形.
(2)在矩形ABCD中,△OCD和△CDE是等边三角形,

∴∠COD=∠CDG=60°,
在△COF和△CDG,

∴△COF≌△CDG(SAS),
∴CF=CG,∠DCG=∠OCF,
∴∠FCG=∠DCO=60°,
∴△CFG为等边三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.
(1)如图1,当DH=DA时,
①填空:∠HGA=       度;
②若EF∥HG,求∠AHE的度数,并求此时a的最小值;
(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平行四边形ABCD中,已知AD=9㎝,AB=5㎝,AE平分∠BAD交BC边于点E,则EC的长为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.
(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;
(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;
(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE和AD在同一直线上.
操作示例:
当AE<a时,如图1,在BA上选取适当的点G,BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰能构成四边形FGCH.
思考发现:小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图所示),
实践探究:
(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法。
(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的。(提示:过点F作FM⊥AH,垂足为点M);
拓展延伸
类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=4,BC=3,将矩形绕点C按顺时针方向旋转,使点B落在线段AC上,得矩形CEFG,边CD与EF交于点H,连接DG.
(1)CH=   
(2)求DG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在?ABCD中,EF过对角线的交点O,交BC于E,交AD于F.若AD=9,AB=7,OF=3.那么四边形ABEF的周长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为(   )
A.150°B.130°C.120°D.100°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图),把线段AE绕点A旋转,
使点E落在直线BC上的点F处,则F、C两点的距离为____________ .

查看答案和解析>>

同步练习册答案