精英家教网 > 初中数学 > 题目详情

已知如图,AB∥DC,∠D=90°,BC=数学公式,AB=4,数学公式,求梯形ABCD的面积.

解:作BE⊥CD于点E,则DE=AB=4,
∵tanC=
∴cosC=,sinC=
在直角△BCE中,cosC=,即=
sinC==,即=
∴EC=3,BE=1
∴DC=DE+EC=4+3=7,
梯形ABCD的面积是:×(AB+CD)•BE=×(4+7)×1=
分析:作BE⊥CD于点E,在直角△BCE中根据三角函数即可求得BE与EC的长,进而就可以求出梯形的面积.
点评:直角梯形的问题可以转化为直角三角形与矩形的问题解决,转化的方法是作高线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图,AB∥DC,∠D=90°,BC=
10
,AB=4,tanC=
1
3
,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

已知如图:AB∥DC,∠D=900,BC=,AB=4,,求梯形ABCD的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,ABDC,∠D=90°,BC=
10
,AB=4,tanC=
1
3
,求梯形ABCD的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

已知如图,AB∥DC,∠D=90°,BC=,AB=4,,求梯形ABCD的面积.

查看答案和解析>>

同步练习册答案