分析 由DE∥BC,根据平行线的性质可得出“∠C=∠ADE,∠AED=∠ABC,∠EDB=∠CBD”,根据角平行线的性质可设∠CBD=α,则∠AED=2α,通过角的计算得出α=25°,再依据互补角的性质可得出结论.
解答 解:∵DE∥BC,
∴∠C=∠ADE,∠AED=∠ABC,∠EDB=∠CBD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD=∠EDB,
设∠CBD=α,则∠AED=2α.
∵∠A+∠AED+∠ADE=180°,∠ADE+∠EDB+∠BDC=180°,
∴∠A+∠AED=∠EDB+∠BDC,即50°+2α=α+75°,
解得:α=25°.
又∵∠BED+∠AED=180°,
∴∠BED=180°-∠AED=180°-25°×2=130°.
点评 本题考查了平行线的性质、三角形内角和定理以及角的计算,解题的关键是计算出∠AED=50°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com