精英家教网 > 初中数学 > 题目详情

【题目】若二次函数图象的顶点在一次函数的图象上,则称的伴随函数,如:的伴随函数.

1)若的伴随函数,求直线与两坐标轴围成的三角形的面积;

2)若函数的伴随函数轴两个交点间的距离为4,求的值.

【答案】(1)8;(2).

【解析】

1)先求出二次函数的顶点,再把顶点代入一次函数求出p,再求出一次函数与坐标轴的交点坐标,再利用三角形的面积公式求解;

2)先根据函数轴两个交点间的距离为4,求出n,再求出二次函数的顶点,将顶点代入一次函数即可求解.

解:(1

其顶点坐标为

的伴随函数,

在一次函数的图象上,

一次函数为:

一次函数与坐标轴的交点分别为

直线与两坐标轴围成的三角形的两直角边长度都为

直线与两坐标轴围成的三角形的面积为:

2)设函数轴两个交点的横坐标分别为,则

∵函数轴两个交点间的距离为4

解得,

函数为:

其顶点坐标为

的伴随函数,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形为正方形.的坐标为,点的坐标为,反比例函数的图象经过点,一次函数的图象经过点和点.

1)求反比例函数与一次函数的解析式;

2)写出的解集;

3)点是反比例函数图象上的一点,若的面积恰好等于正方形的面积,求点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO1.2米,当车门打开角度∠AOB40°时,车门是否会碰到墙?______(填“是”或“否”)请简述你的理由_______(参考数据:sin40°≈0.64cos40°≈0.77tan40°≈0.84)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。

1)计划到2020年底,全省5G基站的数量是多少万座?;

2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在同一直角坐标系中,二次函数的图象与两坐标轴分别交于点、点和点,一次函数的图象与抛物线交于两点

1)求二次函数的表达式;

2)当取什么值时,一次函数的函数值大于二次函数的函数值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2

(1)求m的取值范围.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线与抛物线交于两点,且点的横坐标是的横坐标是则以下结论:

时,直线与抛物线的函数值都随着的增大而增大;②AB的长度可以等于5;③有可能成为等边三角形;④当时,时,其中正确的结论是(

A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形中,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点

绕点旋转到时(如图1),易证

1)当绕点旋转到时(如图2),线段之间有怎样的数量关系?写出猜想,并加以证明.

2)当绕点旋转到如图3的位置时,线段之间又有怎样的数量关系?请直接写出你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点是斜边上一点,作,过点,联结

1)求证:

2)求证:

查看答案和解析>>

同步练习册答案