【题目】若二次函数图象的顶点在一次函数的图象上,则称为的伴随函数,如:是的伴随函数.
(1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;
(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值.
【答案】(1)8;(2),.
【解析】
(1)先求出二次函数的顶点,再把顶点代入一次函数求出p,再求出一次函数与坐标轴的交点坐标,再利用三角形的面积公式求解;
(2)先根据函数与轴两个交点间的距离为4,求出n,再求出二次函数的顶点,将顶点代入一次函数即可求解.
解:(1),
其顶点坐标为,
是的伴随函数,
在一次函数的图象上,
.
,
一次函数为:,
一次函数与坐标轴的交点分别为,,
直线与两坐标轴围成的三角形的两直角边长度都为,
直线与两坐标轴围成的三角形的面积为:.
(2)设函数与轴两个交点的横坐标分别为,,则,,
,
∵函数与轴两个交点间的距离为4,
,
解得,,
函数为:,
其顶点坐标为,
是的伴随函数,
,
.
科目:初中数学 来源: 题型:
【题目】如图,四边形为正方形.点的坐标为,点的坐标为,反比例函数的图象经过点,一次函数的图象经过点和点.
(1)求反比例函数与一次函数的解析式;
(2)写出的解集;
(3)点是反比例函数图象上的一点,若的面积恰好等于正方形的面积,求点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?______;(填“是”或“否”)请简述你的理由_______.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。
(1)计划到2020年底,全省5G基站的数量是多少万座?;
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在同一直角坐标系中,二次函数的图象与两坐标轴分别交于点、点和点,一次函数的图象与抛物线交于,两点
(1)求二次函数的表达式;
(2)当取什么值时,一次函数的函数值大于二次函数的函数值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.
(1)求m的取值范围.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,直线与抛物线交于两点,且点的横坐标是点的横坐标是则以下结论:
①时,直线与抛物线的函数值都随着的增大而增大;②AB的长度可以等于5;③有可能成为等边三角形;④当时,时,其中正确的结论是( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.
当绕点旋转到时(如图1),易证.
(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.
(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com