精英家教网 > 初中数学 > 题目详情
13.方程(x-1)3=-8的解为x=-1.

分析 把(x-1)看作一个整体,利用立方根的定义解答即可.

解答 解:∵(x-1)3=-8,
∴x-1=-2,
∴x=-1.
故答案为:x=-1.

点评 本题考查了利用立方根的定义求未知数的值,熟记概念是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.现规定一种新运算“*”:a*b=ab,如3*2=32=9,则($\frac{1}{2}$)*3=(  )
A.$\frac{1}{6}$B.8C.$\frac{1}{8}$D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是(  )
A.y=(x+1)2-2B.y=-(x-1)2-2C.y=-(x-1)2+2D.y=(x-1)2-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平面直角坐标系中,点A(4,0),B为第一象限内一点,且△OAB为等边三角形,C为OB的中点,连接AC.
(1)如图①,求点C的坐标;
(2)如图②,将△OAC沿x轴向右平移得到△DFE,设OD=m,其中0<m<4.
①设△OAB与△DEF重叠部分的面积为S,用含m的式子表示S;
②连接BD,BE,当BD+BE取最小值时,求点E的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,已知:点D在△ABC的边AB上,连结CD,∠1=∠B,AD=4,AC=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读下列材料并解决有关问题:我们知道|x|=$\left\{\begin{array}{l}{x,(x>0)}\\{0,(x=0)}\\{-x,(x<0)}\end{array}\right.$,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别叫做|x+1|与|x-2|的零点值.)在有理数范围内,零点值x=-1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:
(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;
(2)当-1≤x≤2时,原式=x+1-(x-2)=3;
(3)当x>2时,原式=x+1+x-2=2x-1.
综上所述,原式=$\left\{\begin{array}{l}{-2x+1,(x<-1)}\\{3,(-1≤x≤2)}\\{2x-1,(x>2)}\end{array}\right.$.
通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|x-4|的零点值;
(2)化简代数式|x+2|+|x-4|;
(3)求方程:|x+2|+|x-4|=6的整数解;
(4)|x+2|+|x-4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:$\frac{{x}^{2}+2}{6}$+$\frac{x}{2}$=x.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.将一元二次方程3x2-5=4x化为一般形式后,二次项系数和一次项系数分别是(  )
A.-3,4B.3,-4C.-3,-4D.3,4

查看答案和解析>>

同步练习册答案