精英家教网 > 初中数学 > 题目详情
2.某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水费y(元)与用水量x(吨)之间的函数关系.
(1)当用水量≥10吨时,求y关于x的函数解析式(并写出定义域);
(2)按上述分段收费标准,小明家四、五月份分别交水费42元和27元,问五月份比四月份节约用水多少吨?

分析 (1)观察函数图象找出点的坐标,利用待定系数法即可求出当用水量≥10吨时,y关于x的函数解析式;
(2)利用待定系数法求出当0≤x≤10时,y关于x的函数解析式,再利用一次函数图象上点的坐标特征,分别求出四、五月份的用水量,二者做差后即可得出结论.

解答 解:(1)设x≥10时,y关于x的函数解析式为y=kx+b,
将点(10,30)、(20,70)代入y=kx+b,
$\left\{\begin{array}{l}{10k+b=30}\\{20k+b=70}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=4}\\{b=-10}\end{array}\right.$,
∴当用水量≥10吨时,y关于x的函数解析式为y=4x-10(x≥10).
(2)设当0≤x≤10时,y关于x的函数解析式为y=mx,
将点(10,30)代入y=mx,
30=10m,解得:m=3,
∴y=3x(0≤x≤10).
当y=4x-10=42时,x=13;
当y=3x=27时,x=9.
13-9=4(吨).
答:五月份比四月份节约用水4吨.

点评 本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用一次函数图象上点的坐标特征,分别求出四、五月份的用水量.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,AB,CD相交于点O,AO=CO,试添加一个条件使得△AOD≌△COB,你添加的条件是∠A=∠C(只需填写一个)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AB∥CD,E为直线BC右侧一点,连接BE、CE,作∠ABE和∠DCE的角平分线BF、CF相交于点F.
(1)请写出∠ABE、∠DCE和∠E的关系式,并证明;
(2)请直接写出∠ABF、∠DCF和∠F的关系式;
(3)根据(1)、(2)的结论,请直接写出∠E和∠F的关系式,并计算当∠F=125°时,∠E的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,已知△ABC和△A′B′C′关于直线MN对称,点P是直线MN上一点,连接PA、PA′、AA′,下列结论错误的是(  )
A.∠B=∠B′B.PA=PA′
C.BC=AA′D.MN是线段AA′的垂直平分线

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.方程2=$\sqrt{x-6}$的解是x=10.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.不等式3x-1≤2(x+2)的最大整数解是5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,以数轴的单位长线段为边作一个矩形,以数轴的原点为圆心,矩形对角线长度为半径画圆弧,交数轴负半轴的点A处,则点A表示的数是-$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)x
销售量y(件)-10x+800
销售玩具获得利润w(元)-10x2+1000x-16000
(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.关于x,y的方程组$\left\{\begin{array}{l}{y+2x=m}\\{x+2=5m}\end{array}\right.$的解满足x+y=6,则m的值为-1.

查看答案和解析>>

同步练习册答案