精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
(1)证明:连接DO;
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即点E是边BC的中点;

(2)∵BC,BA分别是⊙O的切线和割线,
∴BC2=BD•BA,
∴(2EC)2=BD•BA,即BA•2
6
=36,
∴BA=3
6

在Rt△ABC中,由勾股定理得
AC=
AB2-BC2
=
(3
6
)
2
-62
=3
2


(3)△ABC是等腰直角三角形.
理由:∵四边形ODEC为正方形,
∴∠DOC=∠ACB=90°,即DOBC,
又∵点E是边BC的中点,
∴BC=2OD=AC,
∴△ABC是等腰直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,一圆内切于四边形ABCD,且AB=8,CD=5,则AD+BC的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知l1l2,点A、B在直线l1上,AB=4,过点A作AC⊥l2,垂足为C,AC=3.过点A的直线与直线l2交于点P,以点C为圆心,CP为半径作圆C(如图2).
(1)当CP=1时,求cos∠CAP的值;
(2)如果圆C与以点B为圆心,BA为半径的圆B相切,求CP的长;
(3)探究:当直线AP处于什么位置时(只要求出CP的长),将圆C沿着直线AP翻折后得到的圆C′恰好与直线l2相切?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2
3
,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,AB是半圆O的直径,P是AB延长线上的一点,若OB=BP,则∠P的度数为(  )
A.60°B.45°C.30°D.15°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一个工件上有一梯形块ABCD,其中ADBC,∠BCD=90°,面积为21cm2,周长为20cm,若工人师傅要在其上加工一个以CD为直径的半圆槽,且圆槽刚好和AB边相切(如图所示),求此圆的半径长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦ACPM,连接OM、BC.
求证:(1)△ABC△POM;(2)2OA2=OP•BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.
(1)求证:AB=AC;
(2)当
AB
BC
=
5
4
时,①求tan∠ABE的值;②如果AE=
20
11
,求AC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(1)求证:AC是△BDE的外接圆的切线.
(2)若AD=2
6
,AE=6
2
,求EC的长.

查看答案和解析>>

同步练习册答案