¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Õý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬µãOΪ×ø±êÔ­µã£¬µãAÔÚxÖáÉÏ£¬µãCÔÚyÖáÉÏ£¬µãB¡¢µãP£¨m£¬n£©ÔÚº¯Êýy=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£®¹ýµãP·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ãΪE¡¢F£®
£¨1£©ÇóBµã×ø±êºÍkµÄÖµ£»
£¨2£©µ±PµãµÄºá×ø±ê´óÓÚBµãµÄºá×ø±ê£¬ÇÒSËıßÐÎAEPG=
9
2
ʱ£¬ÇóPAËùÔÚµÄÖ±Ïß·½³Ì£»
£¨3£©Çóº¯Êýy=m+nµÄ×îСֵ£»
£¨×¢£º¿ÉʹÓÃÈçÏÂƽ¾ùÖµ¶¨Àí£ºÈôa£¾0£¬b£¾0£¬Ôòa+b¡Ý2
ab
£¬µ±ÇÒ½öµ±a=bʱµÈºÅ³ÉÁ¢£®£©
·ÖÎö£º£¨1£©¸ù¾ÝÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬¿ÉÇóBµã×ø±êΪ£¨3£¬3£©£¬°ÑBµã×ø±ê´úÈ뺯Êýy=
k
x
ÖУ¬¿ÉÇók=9£»
£¨2£©ÉèP£¨a£¬
9
a
£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=
9
a
£¬ÓÉSËıßÐÎAEPG=PG¡ÁPE=
9
2
£¬Áз½³ÌÇóa£¬ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P¡¢AÁ½µã×ø±ê´úÈë¿ÉÇóÖ±ÏßPAµÄ½âÎöʽ£»
£¨3£©µãP£¨m£¬n£©ÔÚË«ÇúÏßy=
9
x
ÉÏ£¬¿ÉÖªn=
9
m
£¬¹Êy=m+n=m+
9
m
£¬ÔÙ¸ù¾Ýƽ¾ùÖµ¶¨ÀíÇó×îСֵ£®
½â´ð£º½â£º£¨1£©¡ßÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬
¡àAB=BC=3£¬
¼´Bµã×ø±êΪ£¨3£¬3£©£¬
°ÑB£¨3£¬3£©´úÈ뺯Êýy=
k
x
ÖУ¬
µÃk=xy=9£»
¾«Ó¢¼Ò½ÌÍø
£¨2£©ÉèP£¨a£¬
9
a
£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=
9
a
£¬
ÓÉSËıßÐÎAEPG=PG¡ÁPE=
9
2
£¬µÃ£¨a-3£©•
9
a
=
9
2
£¬
½âµÃa=6£¬¹ÊP£¨6£¬
3
2
£©£¬
ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P£¨6£¬
3
2
£©£¬A£¨3£¬0£©Á½µã×ø±ê´úÈ룬
µÃ
6k+b=
3
2
3k+b=0
£¬
½âµÃ
k= 
1
2
b=- 
3
2
£¬
¡àÖ±ÏßPAµÄ½âÎöʽΪy=
1
2
x-
3
2
£»

£¨3£©¡ßµãP£¨m£¬n£©ÔÚË«ÇúÏßy=
9
x
ÉÏ£¬
¡àn=
9
m
£¬
¡ày=m+n=m+
9
m
¡Ý2
m• 
9
m
=6£¬
¡àº¯Êýy=m+nµÄ×îСֵΪ6£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²é·´±ÈÀýº¯Êý½âÎöʽ¡¢Ò»´Îº¯Êý½âÎöʽµÄÇ󷨣¬×¢Òâͨ¹ý½â·½³ÌÇóµãµÄ×ø±ê£¬Áз½³Ì×éÇóÖ±ÏߵĽâÎöʽ£®Í¬Ê±Òª×¢ÒâÔËÓÃÊýÐνáºÏµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCµÄÃæ»ýΪ16£¬µãOΪ×ø±êÔ­µã£¬µãBÔÚº¯Êýy=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£¬µãP£¨m£¬n£©ÊǺ¯Êýy=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏÈÎÒâÒ»µã£¬¹ýµãP·Ö±ð×÷xÖá¡¢yÖᾫӢ¼Ò½ÌÍøµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬²¢Éè¾ØÐÎOEPFºÍÕý·½ÐÎOABC²»Öغϲ¿·ÖµÄÃæ»ýΪS£®£¨Ìáʾ£º¿¼ÂǵãPÔÚµãBµÄ×ó²à»òÓÒ²àÁ½ÖÖÇé¿ö£©
£¨1£©ÇóBµã×ø±êºÍkµÄÖµ£»
£¨2£©µ±S=8ʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Ð´³öSÓëmµÄº¯Êý¹Øϵʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Õý·½ÐÎOABC¡¢ADEFµÄ¶¥µãA£¬D£¬CÔÚ×ø±êÖáÉÏ£¬µãFÔÚABÉÏ£¬µãB¡¢EÔÚº¯Êýy=
4x
  (x£¾0)
µÄͼÏóÉÏ£®
£¨1£©ÇóÕý·½ÐÎOABCµÄÃæ»ý£»
£¨2£©ÇóEµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCºÍÕý·½ÐÎADEFµÄ¶¥µãA£¬D£¬CÔÚ×ø±êÖáÉÏ£¬µãFÔÚABÉÏ£¬µãB£¬EÔÚº¯Êýy=
1
x
£¨x£¾0£©µÄͼÏóÉÏ£¬ÔòEµãµÄ×ø±êÊÇ
£¨
5
+1
2
£¬
5
-1
2
£©
£¨
5
+1
2
£¬
5
-1
2
£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCÓëÕý·½ÐÎODEFÊÇλËÆͼÐΣ¬OΪλËÆÖÐÐÄ£¬ÏàËƱÈΪ1£º
2
£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬ÔòOD=
2
2
£¬µãEµÄ×ø±êΪ
£¨
2
£¬
2
£©
£¨
2
£¬
2
£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCµÄÃæ»ýΪ4£¬µãDΪ×ø±êÔ­µã£¬µãBÔÚº¯Êýy=
k
x
£¨k£¼0£¬x£¼0£©µÄͼÏóÉÏ£¬µãP£¨m£¬n£©ÊǺ¯Êýy=
k
x
£¨k£¼0£¬x£¼0£©µÄͼÏóÉÏÒìÓÚBµÄÈÎÒâÒ»µã£¬¹ýµãP·Ö±ð×÷xÖá¡¢£©£¬ÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£®
£¨1£©Éè¾ØÐÎOEPFµÄÃæ»ýΪs1£¬Çós1£»
£¨2£©´Ó¾ØÐÎDEPFµÄÃæ»ýÖмõÈ¥ÆäÓëÕý·½ÐÎOABCÖغϵÄÃæ»ý£¬Ê£ÓàÃæ»ý¼ÇΪs2£®Ð´³ös2ÓëmµÄº¯Êý¹Øϵʽ£¬²¢±êÃ÷mµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸