精英家教网 > 初中数学 > 题目详情

已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.

解:连接BE,则BE=DG.
理由如下:
∵四边形ABCD和四边形AEFG都是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAD-∠BAG=∠EAG-∠BAG,即∠DAG=∠BAE,

∴△BAE≌△DAG(SAS),
∴BE=DG.
分析:观察DG的位置,找包含DG的三角形,要使两条线段相等,只要找到与之全等的三角形,即可找到与之相等的线段.
点评:①本题考查了正方形的性质、全等三角形的性质以及全等三角形的判定,属于综合性的题目.
②本题是探究性试题,要求有比较高的逻辑思维.注意在平时的培养.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.
(1)发现与证明:
发现:①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:
 

②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:
 

证明:请你选择上述两个发现中的任意一个加以证明,选择①、②证明的满分分别为4分和6分.(注意:证明前要注明选择了哪一个发现)
(2)引申与运用:
引申:当正方形AEFG旋转任意一个角度时(如图3),△ABE与△ADG的面积关系是:
 

运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是
 
cm2
证明:我选择
 
进行证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1)如图1,连接DF、BF,证明:BF=DF;
(2)若将正方形AEFG绕点A按顺时针方向旋转,在旋转的过程中线段DF与BF的长还相等吗?若相等,请证明;若相不等,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.
精英家教网
(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:
 

(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:
 
.并证明你的结论.
(3)运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),则图中阴影部分的面积和的最大值是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD和EFCG,点E、F、G分别在线段AC、BC、CD上,正方形ABCD的边长为6.
(1)如果正方形EFCG的边长为4,求证:△ABE∽△CAG;
(2)正方形EFCG的边长为多少时,tan∠ABE×cot∠CAG=3.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.

(1)如图,当点E旋转到DA的延长线上时,△ABE与△ADG面积之间的关系为:S△ABE
=
=
S△ADG(填“<”“=”“>”);
(2)如图,当正方形AEFG旋转任意一个角度时,S△ABE
=
=
S△ADG(填“<”“=”“>”),并说明理由;
(3)如图,四边形ABCD、四边形AEFG和四边形DGMN均为正方形,则S△ABE、S△ADG、S△CDN和S△GMF的关系是
相等
相等

(4)某小区中有一块空地,要在其中建三个正方形健身场所,其余空地(图中阴影部分)修成草坪,其中一个正方形的边长为6m.另外两个正方形的边长之和为10m,则草坪的最大面积为
48
48
m2

查看答案和解析>>

同步练习册答案