17£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬OΪ×ø±êÔ­µã£¬¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬µãAµÄ×ø±êÊÇ£¨4$\sqrt{3}$£¬0£©£¬µãBÔÚµÚÒ»ÏóÏÞ£¬ACÊÇ¡ÏOABµÄƽ·ÖÏߣ¬²¢ÇÒÓëyÖá½»ÓÚµãE£¬µãMΪֱÏßACÉÏÒ»¸ö¶¯µã£¬°Ñ¡÷AOMÈƵãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßBÖغϣ¬µÃµ½¡÷ABD£®¼ÙÉè·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©Í¼Ïó¾­¹ýµãB
£¨1£©µ±MÓëµãEÖغÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏóÊÇ·ñ¾­¹ýADµÄÖе㣿Ϊʲô£¿
£¨2£©ÊÇ·ñ´æÔÚµãM£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó±Ø¾­¹ýADµÄÖе㣿Èô´æÔÚÇó³öµãMµÄ×ø±ê£¬Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±MÓëµãEÖغÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾­¹ýADµÄÖе㣮ÀíÓÉ£ºÉèADµÄÖеãΪµãF£¬×÷BH¡ÍOA£¬ÓÉ¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬µãAµÄ×ø±êÊÇ£¨4$\sqrt{3}$£¬0£©£¬¿ÉÇó³öOA=OB=4$\sqrt{3}$£¬OH=HA=$\frac{1}{2}$OA=2$\sqrt{3}$£¬È»ºóÔÚRt¡÷BOHÖУ¬Óɹ´¹É¶¨Àí¿ÉÇóBHµÄÖµ£¬½ø¶øÈ·¶¨BµãµÄ×ø±ê£¬ÓÉ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©Í¼Ïó¾­¹ýµãB£¬´Ó¶øÈ·¶¨·´±ÈÀýº¯ÊýµÄ¹Øϵʽ£ºy=$\frac{12\sqrt{3}}{x}$£¬È»ºóÓÉACÊÇ¡ÏOABµÄƽ·ÖÏߣ¬¿ÉµÃ¡ÏOAE=¡ÏBAE=30¡ã£¬ÔÚRt¡÷AOEÖУ¬ÓÉ30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßµÈÓÚб±ßµÄÒ»°ë£¬¿ÉµÃOE=$\frac{1}{2}$AE£¬Óɹ´¹É¶¨ÀíµÃ£ºOA2+OE2=AE2£¬¿ÉÇó£ºOE=4£¬½ø¶ø¿ÉµÃAE=8£¬ÓÉ¡÷AOMÈƵãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖغϣ¬µÃµ½¡÷ABD£¬¸ù¾ÝÐýתµÄÐÔÖÊ£¬¿ÉµÃAD=AE=8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬½ø¶ø¿ÉµÃ¡ÏAOD=90¡ã£¬ÓɵãFÊÇADµÄÖе㣬¿ÉµÃµãFµÄ×ø±êΪ£º£¨4$\sqrt{3}$£¬4£©£¬È»ºó½«FµãµÄ×ø±ê´úÈë¹Øϵʽ£¬ÑéÖ¤µãF²»ÔÚ·´±ÈÀýº¯Êýy=$\frac{12\sqrt{3}}{x}$µÄͼÏóÉÏ£¬´Ó¶øµÃµ½£ºµ±MÓëµãEÖغÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾­¹ýADµÄÖе㣻
£¨2£©´æÔÚµãM£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó±Ø¾­¹ýADµÄÖе㣮ÓÉ£¨1£©Öª£ºOE=4£¬½ø¶øÈ·¶¨E£¨0£¬4£©£¬È»ºóÉèÖ±ÏßACµÄ¹ØϵʽΪ£ºy=kx+b£¬½«A£¨4$\sqrt{3}$£¬0£©£¬E£¨0£¬4£©´úÈëÉÏÊö¹Øϵʽ£¬´Ó¶ø¿ÉµÃÖ±ÏßACµÄ¹ØϵʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x+4£¬ÓɵãMÔÚÖ±ÏßACÉÏ£¬¿ÉÉèMµÄ×ø±êΪ£º£¨a£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬½ø¶ø¿ÉµÃMP=-$\frac{\sqrt{3}}{3}$a+4£¬È»ºóÓÉ30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßµÈÓÚб±ßµÄÒ»°ë£¬¿ÉµÃAM=2MP=-$\frac{2\sqrt{3}}{3}a$+8£¬ÓÉ¡÷AOMÈƵãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖغϣ¬µÃµ½¡÷ABD£¬¸ù¾ÝÐýתµÄÐÔÖÊ£¬¿ÉµÃAD=AM=-$\frac{2\sqrt{3}}{3}$a+8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬½ø¶ø¿ÉµÃ¡ÏAOD=90¡ã£¬´Ó¶øÈ·¶¨ADµÄÖеãµÄ×ø±ê£¬ÓÉ·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó±Ø¾­¹ýADµÄÖе㣬½«ADµÄÖе㣬´úÈëy=$\frac{12\sqrt{3}}{x}$£¬´Ó¶øÈ·¶¨MµÄ×ø±ê£®

½â´ð ½â£º£¨1£©µ±MÓëµãEÖغÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾­¹ýADµÄÖе㣮

ÀíÓÉ£ºÉèADµÄÖеãΪµãF£¬×÷BH¡ÍOA£¬
¡ß¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬µãAµÄ×ø±êÊÇ£¨4$\sqrt{3}$£¬0£©£¬
¡àOA=OB=4$\sqrt{3}$£¬OH=HA=$\frac{1}{2}$OA=2$\sqrt{3}$£¬¡ÏOAB=60¡ã£¬
ÔÚRt¡÷BOHÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºBH=$\sqrt{O{B}^{2}-O{H}^{2}}$=6£¬
¡àBµãµÄ×ø±êΪ£º£¨2$\sqrt{3}$£¬6£©£¬
¡à·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©Í¼Ïó¾­¹ýµãB£¬
¡àk=xy=12$\sqrt{3}$£¬
¡à·´±ÈÀýº¯ÊýµÄ¹Øϵʽ£ºy=$\frac{12\sqrt{3}}{x}$£¬
¡ßACÊÇ¡ÏOABµÄƽ·ÖÏߣ¬
¡à¡ÏOAE=¡ÏBAE=30¡ã£¬
ÔÚRt¡÷AOEÖУ¬
¡ß¡ÏOAE=30¡ã£¬
¡àOE=$\frac{1}{2}$AE£¬
Óɹ´¹É¶¨ÀíµÃ£ºOA2+OE2=AE2£¬
¼´£¨4$\sqrt{3}$£©2+OE2=£¨2OE£©2£¬
½âµÃ£ºOE=4£¬
¡àAE=8£¬
¡ß¡÷AOMÈƵãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖغϣ¬µÃµ½¡÷ABD£®
¡àAD=AE=8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬
¡à¡ÏAOD=¡ÏOAB+¡ÏDAB=90¡ã£¬
¡ßµãFÊÇADµÄÖе㣬
¡àµãFµÄ×ø±êΪ£º£¨4$\sqrt{3}$£¬4£©£¬
µ±x=4$\sqrt{3}$ʱ£¬y=$\frac{12\sqrt{3}}{4\sqrt{3}}$=3¡Ù4£¬
¡àµãF²»ÔÚ·´±ÈÀýº¯Êýy=$\frac{12\sqrt{3}}{x}$µÄͼÏóÉÏ£¬
¼´µ±MÓëµãEÖغÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾­¹ýADµÄÖе㣮
£¨2£©´æÔÚµãM£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó±Ø¾­¹ýADµÄÖе㣮

ÓÉ£¨1£©Öª£ºOE=4£¬
¡àE£¨0£¬4£©£¬
ÉèÖ±ÏßACµÄ¹ØϵʽΪ£ºy=kx+b£¬
½«A£¨4$\sqrt{3}$£¬0£©£¬E£¨0£¬4£©´úÈëÉÏÊö¹ØϵʽµÃ£º
$\left\{\begin{array}{l}{b=4}\\{4\sqrt{3}k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=4}\end{array}\right.$£¬
¡àÖ±ÏßACµÄ¹ØϵʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x+4£¬
¡ßµãMÔÚÖ±ÏßACÉÏ£¬
¡àÉèMµÄ×ø±êΪ£º£¨a£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬
¡àMP=-$\frac{\sqrt{3}}{3}$a+4£¬
¡ß¡ÏMAO=30¡ã£¬
¡àAM=2MP=-$\frac{2\sqrt{3}}{3}a$+8£¬
¡ß¡÷AOMÈƵãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖغϣ¬µÃµ½¡÷ABD£®
¡àAD=AM=-$\frac{2\sqrt{3}}{3}$a+8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬
¡à¡ÏAOD=¡ÏOAB+¡ÏDAB=90¡ã£¬
¡àADµÄÖеãµÄ×ø±êΪ£º£¨4$\sqrt{3}$£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬
¡ß·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó±Ø¾­¹ýADµÄÖе㣬
¡à½«ADµÄÖеãµÄ×ø±ê£¨4$\sqrt{3}$£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬´úÈëy=$\frac{12\sqrt{3}}{x}$µÃ£º
-$\frac{\sqrt{3}}{3}$a+4=$\frac{12\sqrt{3}}{4\sqrt{3}}$£¬
½âµÃ£ºa=-$\sqrt{3}$£¬
¡àM£¨-$\sqrt{3}$£¬5£©£®
¼´´æÔÚµãM£¨-$\sqrt{3}$£¬5£©£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{12\sqrt{3}}{x}$µÄͼÏó±Ø¾­¹ýADµÄÖе㣮

µãÆÀ ´ËÌâÊÇ·´±ÈÀýº¯ÊýµÄ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁË£ºÓôý¶¨ÏµÊý·¨Çó¹Øϵʽ¡¢¹´¹É¶¨Àí¡¢ÔÚƽÃæÖ±½Ç×ø±êϵÄÚÈ·¶¨µãµÄ×ø±êµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇ£ºÃ÷ȷͼÐεÄÐýת²»¸Ä±äͼÐεĴóСÓëÐÎ×´£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆË㣺
£¨1£©|$\sqrt{10}$-$\sqrt{13}$|=$\sqrt{13}$-$\sqrt{10}$£»
£¨2£©|3-¦Ð|+$\sqrt{£¨4-¦Ð£©^{2}}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬ÔÚ¡ÑOÖУ¬ÏÒABµÈÓÚ¡ÑOµÄ°ë¾¶£¬OC¡ÍAB½»¡ÑOÓÚµãC£¬Ôò¡ÏAOCµÈÓÚ£¨¡¡¡¡£©
A£®80¡ãB£®50¡ãC£®40¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èç¹û|x+y-3|=2x+2y£¬Ôò£¨x+y£©3µÈÓÚ£¨¡¡¡¡£©
A£®1B£®-27C£®1»ò-27D£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬µãPÊÇ$\widehat{AB}$µÄÖе㣮
£¨1£©ÇóÖ¤£º¡ÏABP=45¡ã£»
£¨2£©ÈôAC=6£¬BC=8£¬Á¬½ÓCP½»ABÓÚD£¬Çó$\frac{CD}{PD}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬³¤·½ÐÎABCDµÄÃæ»ýΪ60ƽ·½ÀåÃ×£¬AE=EB£¬BF=FC£¬CG=GD£¬HΪAD±ßÉÏÈÎÒâÒ»µã£¬ÒõÓ°²¿·ÖÃæ»ýºÍ³¤·½ÐÎABCDÃæ»ýµÄ±ÈÊÇ1£º2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖªÖ±Ïßl£º$y=\sqrt{3}x+3$ÓëxÖá¡¢yÖá½»ÓÚA¡¢BÁ½µã£¬½«Ö±ÏßlÏòÏÂƽÒÆm¸öµ¥Î»³¤¶ÈºóµÃÖ±Ïßl1£¬Ö±Ïßl1ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC¡¢DÁ½µã£¬½«¡÷CODÈƵãOÑØÄæʱÕë·½ÏòÐýת60¡ãºóµÃµ½¡÷C¡äO¡äD¡ä£®Èô¡÷AOB¡Õ¡÷COD£º
£¨1£©mµÄÖµÊÇ6£»Ö±Ïßl1µÄº¯Êý±í´ïʽÊÇy=$\sqrt{3}$x-3£»
£¨2£©ÇóÖ¤£ºl1´¹Ö±Æ½·ÖOD¡ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®xµÄ3±¶¼õ6µÄ²î²»´óÓÚ2£¬Áгö²»µÈʽ£º3x-6¡Ü2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚС¿×³ÉÏñÎÊÌâÖУ¬¸ù¾ÝÈçͼËùʾ£¬ÈôOµ½ABµÄ¾àÀëÊÇ18cm£¬Oµ½CDµÄ¾àÀëÊÇ6cm£¬ÔòÏñCDµÄ³¤ÊÇÎïAB³¤µÄ£¨¡¡¡¡£©
A£®3±¶B£®$\frac{1}{2}$
C£®$\frac{1}{3}$D£®²»ÖªABµÄ³¤¶È£¬ÎÞ·¨ÅжÏ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸