精英家教网 > 初中数学 > 题目详情
3.已知:如图,AB=CD,AE⊥BD于E,CF⊥BD于F,AE=CF.
求证:①BE=DF;
②EO=FO;
③BO=DO.

分析 ①根据全等三角形的判定和性质即可得到结论;
②根据全等三角形的判定和性质即可得到结论;
③根据线段的和差即可得到结论.

解答 证明:①∵AE⊥BD于E,CF⊥BD于F,
∴在Rt△ABE与Rt△CDF中,$\left\{\begin{array}{l}{AB=CD}\\{AE=CF}\\{\;}\end{array}\right.$,
∴Rt△ABE≌Rt△CDF,
∴BE=DF;
②在△AEO与△CFO中,$\left\{\begin{array}{l}{∠AEO=∠CFO=90°}\\{∠AOE=∠COF}\\{AE=CF}\end{array}\right.$,
∴△AEO≌△CFO,
∴OE=OF;
③∵BE=DF,OE=OF,
∴BO=DO.

点评 本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.(1)计算:$\sqrt{4}$+20170-|$\sqrt{3}$-2|+1
(2)计算:$\frac{{x}^{2}+4x+4}{{x}^{2}+2x}$÷(2x-$\frac{4+{x}^{2}}{x}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.广安某网站调查,2016年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据以上信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若广安市约有900万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、点B(点A在点B左侧),与y轴交于点C,点D为抛物线的顶点,已知点A、点B的坐标分别为A(-1,0)、B(3,0).
(1)求抛物线的解析式;
(2)在直线BC上方的抛物线上找一点P,使△PBC的面积最大,求P点的坐标;
(3)如图2,连接BD、CD,抛物线的对称轴与x轴交于点E,过抛物线上一点M作MN⊥CD,交直线CD于点N,求当∠CMN=∠BDE时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.
(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为4;
(2)求点M(3,0)到直线y=2x+1的距离;
(3)如果点N(0,a)到直线y=2x+1的距离为3,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知AD=4,CD=3,BC=12,AB=13,∠ADC=90°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:如图,平面直角坐标系中,点B坐标为(-4,0),点A为线段OB中点,点P在第三象限,且AP⊥y轴,PF⊥y轴,D为BP中点,连接DA并延长交y轴于点C,FE⊥DC.
(1)直接写出点A坐标(-2,0);
(2)求证:BP=AC;
(3)若点E为AC中点,连接PE,判断△PEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.一次函数y=5x+3的图象是经过点(0,3)和(1,8)的一条直线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列运算中错误的是(  )
A.$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$B.$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$C.2 $\sqrt{2}$+3$\sqrt{2}$=5$\sqrt{2}$D.$\sqrt{(\sqrt{2}-\sqrt{3})^{2}}$=$\sqrt{2}-\sqrt{3}$

查看答案和解析>>

同步练习册答案