精英家教网 > 初中数学 > 题目详情
已知正整数m,n都是质数,并且7m+n,mn+11也是质数,试求(mnn+(nmm的值.
∵mn+11为质数,且mn+11>11,
∴mn+11为奇质数,
故mn为偶数,又m,n为质数,所以m,n中至少有一个为2.(5分)
(1)当m=n=2时,mn+11=15不为质数,矛盾.(10分)
(2)当m=2,n≠2时,由n+14,2n+11均为质数可知n=3,
否则,当n=3k+1(k为正整数)时,n+14=3k+15=3(k+5)为合数,矛盾;
当n=3k+2时,2n+11=6k+15=3(2k+5)为合数,矛盾;
故n=3,此时,mn+11=17,7m+n=17均为质数,符合题意.(15分)
(3)当n=2时,mn+11=2m+11,7m+n=7m+2,它们均为质数,此时必有m=3,
否则令m=3k+1,mn+11=6k+12=6(k+2)为合数,矛盾;
令m=3k+2,7m+n=21k+9=3(7k+3)为合数,矛盾;
故m=3.(20分)
所以(m,n)=(2,3),(3,2).
所以(mnn+(nmm=593.(25分)
故答案为:593.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知正整数m,n都是质数,并且7m+n,mn+11也是质数,试求(mnn+(nmm的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知正整数p,q都是质数,并且7p+q与pq+11也都是质数,则pq的值是
8或9

查看答案和解析>>

科目:初中数学 来源: 题型:

9、已知正整数p和q都是质数,且7p+q与pq+11也都是质数,试求pq+qp的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知正整数p和q都是质数,且7p+q与pq+11也都是质数,试求pq+qp的值.

查看答案和解析>>

同步练习册答案