精英家教网 > 初中数学 > 题目详情
如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B.
(1)写出点B的坐标______;
(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为______.
(1)∵抛物线y=-x2+3x的对称轴为x=-
3
2×(-1)
=
3
2

∴当x=
3
2
时,y=-2x=-3,即B点(
3
2
,-3);

(2)设D(0,2a),则直线CD解析式为y=-2x+2a,可知C(a,0),即OC:OD=1:2,
则OD=2a,OC=a,根据勾股定理可得:CD=
5
a.
以CD为直角边的△PCD与△OCD相似,
当∠CDP=90°时,

若PD:DC=OC:OD=1:2,则PD=
5
2
a,设P的横坐标是x,则P点纵坐标是-x2+3x,
根据题意得:
x2+(-x2+3x-2a)2=(
5
a
2
)2
(
5
a)2+(
5
a
2
)
2
=(-x2+3x)2+(x-a)2

解得:
x=
1
2
a=
1
2

则P的坐标是:(
1
2
5
4
),
若DC:PD=OC:OD=1:2,同理可以求得P(2,2),
当∠DCP=90°时,

若PC:DC=OC:OD=1:2,则P(
11
4
11
16
),若DC:PD=OC:OD=1:2,则P(
13
5
26
25
).
故答案为:(2,2),(
1
2
5
4
),(
11
4
11
16
),(
13
5
26
25
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线的方程C1:y=-
1
m
(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某抛物线型桥拱的最大高度为16米,跨度为40米,图示为它在坐标系中的示意图,则它对应的解析式为:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k-1)x+2k-1的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,其中k是一元二次方程p2-p-2=0的根,且k<0.
(1)求这个二次函数的解析式及A、B两点的坐标;
(2)若直线l:y=mx(m≠0)与线段BC交于点D(点D不与点B、C重合),则是否存在这样的直线l,使得以B、O、D为顶点的三角形与△ABC相似?若存在,求出该直线的解析式及点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=BC=2,高BE=
3
,在BC边的延长线上取一点D,使CD=3.
(1)现有一动点P由A沿AB移动,设AP=t,S△PCD=S,求S与t之间的关系式及自变量t的取值范围.
(2)在(1)的条件下,当t=
1
3
时,过点C作CH⊥PD于H,设K=7CH:9PD.求证:关于x的二次函数y=-x2-(10k-
3
)x+2k
的图象与x轴的两个交点关于原点对称.
(3)在(1)的条件下,是否存在正实数t,使PD边上的高CH=
1
2
CD
?如果存在,请求出t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

体育课上,老师训练学生的项目是投篮,假设一名同学投篮后,篮球运行的轨迹是一段抛物线,将所得轨迹形成的抛物线放在如图所示的坐标系中,得到解析式为y=-
1
5
x2+
2
5
x+3.3(单位:m).请你根据所得的解析式,回答下列问题:
(1)球在空中运行的最大高度为多少米;
(2)如果一名学生跳投时,球出手离地面的高度为2.25m,请问他距篮球筐中心的水平距离是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2米,喷水水流的轨迹是抛物线,如果要求水流的最高点P到喷水枪AB所在直线的距离为1米,且水流着地点C距离水枪底部B的距离为
5
2
米,那么水流的最高点距离地面是多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�