精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数的图象与反比例函数为常数,且)的图象交于A(1,a)、B两点.

(1)求反比例函数的表达式及点B的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积.

【答案】(1)B(3,1);(2)P,0)

【解析】

试题分析:(1)把点A(1,a)代入一次函数y=﹣x+4,即可得出a,再把点A坐标代入反比例函数,即可得出k,两个函数解析式联立求得点B坐标;

(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.

试题解析:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数,得k=3,∴反比例函数的表达式,两个函数解析式联立列方程组得,解得,∴点B坐标(3,1);

(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0),S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.

(1)求证:CD是⊙O的切线;

(2)若AD=1,OA=2,求AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,点P在BA的延长线上,弦CDAB,垂足为E,且=PEPO.

(1)求证:PC是O的切线.

(2)若OE:EA=1:2,PA=6,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为反比例函数y= 的图像上一点,PA⊥x轴于点A,△PAO的面积为6,则下列各点中也在这个反比例函数图像上的是(
A.(2,3)
B.(﹣2,6)
C.( 2,6 )
D.(﹣2,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是(
A.a<2
B.a>2
C.a<﹣2
D.a<2且a≠1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点Pm2m+1)在y轴上,则点P的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.

(1)求证:EF是⊙O的切线;

(2)若EB=,且sin∠CFD=,求⊙O的半径与线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解一元一次方程的基本步骤去分母,移项、去括号、合并同类项,化为ax=b的形式,求出x.
解方程:
(1)
(2)
(3)
(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的O分别交线段BC,AC于点D,E,过点D作DFAC,垂足为F,线段FD,AB的延长线相交于点G.

(1)求证:DF是O的切线;

(2)若CF=1,DF=,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案