分析 此题要分两种情况:当BE:DE=2:3时;当BE:DE=3:2时,分别利用平行四边形的性质可得AB∥CD,AB=CD,再判定△FEB∽△CED,根据相似三角形的性质可得$\frac{FB}{CD}$=$\frac{EB}{ED}$,进而可得答案.
解答 解:如图1,当BE:DE=2:3时
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴△FEB∽△CED,
∴$\frac{FB}{CD}$=$\frac{EB}{ED}$=$\frac{2}{3}$,
∴$\frac{FB}{AB}$=$\frac{2}{3}$,
∴AF:FB=1:2;
如图2,当BE:DE=3:2时,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴△FEB∽△CED,
∴$\frac{FB}{CD}$=$\frac{EB}{ED}$=$\frac{3}{2}$,
∴$\frac{FB}{AB}$=$\frac{3}{2}$,
∴AF:FB=1:2;
故答案为:1:2.
点评 此题主要考查了平行四边形的性质和相似三角形的判定与性质,关键是掌握平行四边形对边平行,相似三角形对应边成比例.
科目:初中数学 来源: 题型:选择题
A. | 63°30′ | B. | 53°30′ | C. | 73°30′ | D. | 93°30′ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $-\frac{3}{2}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{2}$ | D. | $-\frac{7}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com