精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,AD是∠BAC的外角的角平分线,且AD∥BC.
求证:△ABC是等腰三角形.

【答案】分析:由角平分线可得两个角相等,由平行线可得角相等,通过等量代换可得∠B=∠C,得到三角形为等腰三角形.
解答:证明:∵AD是△ABC外角∠CAE的平分线(已知),
∴∠DAE=∠DAC(角平分线定义),
∵AD∥BC(已知),
∴∠DAE=∠B(两直线平行,同位角相等),
∠DAC=∠C(两直线平行,内错角相等),
∴∠B=∠C(等量代换),
∴AB=AC(等边对等角),
即△ABC是等腰三角形.
点评:本题考查了等腰三角形的判定;平行线与角平分线同时出现在一个题目中时,往往有等腰三角形出现,这是常识,注意应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案