精英家教网 > 初中数学 > 题目详情
当二次函数取最小值时,的值为
A.B.C.D.
A.

试题分析:因为,所以当时,有最小值5.故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于点A(—2,0),交y轴于点B(0,).直过点A与y轴交于点C,与抛物线的另一个交点是D.

(1)求抛物线与直线的解析式;
(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象与一次函数的图象交于两点. C为二次函数图象的顶点.

(1)求二次函数的解析式;
(2)定义函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,若y1≠y2,函数f的函数值等于y1、y2中的较小值;若y1=y2,函数f的函数值等于y1(或y2).” 当直线(k >0)与函数f的图象只有两个交点时,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于每个非零自然数轴上有两点,以表示这两点间的距离,其中,的横坐标分别是方程组的解,则的值等于           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过(0,-1),(3,2)两点.求它的解析式及顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:二次函数y=x2-4x+3.
(1)将y=x2-4x+3化成的形式;
(2)求出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一条抛物线)与x轴相交于A、B两点(点A在点B的左侧).若点M、N的坐标分别为(0,—2)、(4,0),抛物线与直线MN始终有交点,线段AB的长度的最小值为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知二次函数y=x2+bx+c的图象如图所示,若y<0,则x的取值范围是
A.-1<x<4 B.-1<x<3
C.x<-1或x>4D.x<-1或x>3

查看答案和解析>>

同步练习册答案