精英家教网 > 初中数学 > 题目详情
如图所示,⊙O中,弦AB,CD相交于P点,则PA•PB=
PC•PD
PC•PD
分析:连接AC,DB,由同弧所对的圆周角相等可得一对角相等,再由对顶角相等,根据两角对应相等的两三角形相似,可得三角形APC与三角形DPB相似,由相似三角形的对应边成比例得出比例式,变形后即可得证.
解答:证明:连接AC、DB,
BC
=
BC

∴∠A=∠D,
又∵∠APC=∠DPB,
∴△APC∽△DPB,
PA
PD
=
PC
PB

∴PA•PB=PC•PD.
故答案为:PC•PD.
点评:此题考查了相似三角形的判定与性质及圆周角定理,难度一般,解答本题的关键是熟练掌握相似三角形的判定方法以及同弧所对的圆周角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,⊙O中的弦AC,BD相交于点M,MC=MB,
AB
CD
相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,⊙O中,弦AC、BD交于E,
BD
=2
AB

(1)求证:AB2=AE?AC
(2)延长EB到F,使EF=CF,试判断CF与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,⊙O中,弦CD交直径AB于点P,AB=12cm,PA:PB=1:5,且∠BPD=30°,则CD=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,⊙O中,弦AB,CD相交于P点,则下列结论正确的是(  )

查看答案和解析>>

同步练习册答案