精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB90°,ACBC,将△ACB绕点A逆时针旋转60°得到△ACB′,则CB′的长为(  )

A. +B. 1+C. 3D. +

【答案】B

【解析】

连接BB',根据线段垂直平分线的判定定理可得:CB'AB的垂直平分线,则CB'ABAFBF,分别计算CFB'F的长,相加可得结论.

连接BB',设CB'AB的交点为F

由旋转得:ABAB',∠BAB'60°,

∴△ABB'是等边三角形,

AB'BB'

ACBC

CB'AB的垂直平分线,

CB'ABAFBF

RtACB中,ACBC

AB2CFAB1

BB'AB2BF1

由勾股定理得:B'F

CB'CF+B'F1+

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,点AB的坐标分别为(04),(﹣30),EAB的中点,EFAOOB于点FAFEO交于点P,则EP的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,六边形ABCDEF的六个角都是120°,边长AB=1cmBC=3cmCD=3cmDE=2cm,则这个六边形的周长是:__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线y=﹣x2+bx+cx轴相交于AB两点,且点A的坐标为(10),与y轴交于点C,对称轴直线x2x轴相交于点D,点P是抛物线对称轴上的一个动点,以每秒1个单位长度的速度从抛物线的顶点E向下运动,设点P运动的时间为ts).

1)点B的坐标为   ,抛物线的解析式是   

2)求当t为何值时,△PAC的周长最小?

3)当t为何值时,△PAC是以AC为腰的等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学举行“校园朗读者”朗诵大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写表格;

平均分(分)

中位数(分)

众数(分)

初中部

   

85

   

高中部

85

   

100

2)结合两队成绩的平均数和中位数,   队的决赛成绩较好;

3)已知高中代表队决赛成绩的方差为160,计算初中代表队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.(方差公式:S2[x12+x22++xn2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y关于x二次函数yx2﹣(2k+1x+k2+5k+9)与x轴有交点.

1)求k的取值范围;

2)若x1x2是关于x的方程x2﹣(2k+1x+k2+5k+9)=0的两个实数根,且x12+x2239,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】猜想归纳:为了建设经济型节约型社会,先锋材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(已知:AC40BC30,∠C90°)

(1)如图①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;

(2)如图②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;

(3)如图③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;

(4)猜想:如图④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC6,空自部分面积为10.5,则阴影部分面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

同步练习册答案