精英家教网 > 初中数学 > 题目详情
根据以下10个乘积,回答问题:
11×29;12×28;13×27;14×26;15×25;
16×24;17×23;18×22;19×21;20×20.
(1)试将以上各乘积分别写成一个“□2-∅2”(两数平方差)的形式,并写出其中一个的思考过程;
(2)将以上10个乘积按照从小到大的顺序排列起来;
(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明)
分析:利用两数的和与这两数的差的积,就是它们的平方差.如11×29;可想几加几等于29,几减几等于11,可得20+9和20-9,可得11×29=202-92,同理思考其它的.
解答:解:(1)11×29=202-92;12×28=202-82;13×27=202-72
14×26=202-62;15×25=202-52;16×24=202-42
17×23=202-32;18×22=202-22;19×21=202-12
20×20=202-02.(4分)
例如,11×29;假设11×29=□2-○2
因为□2-○2=(□+○)(□-○);
所以,可以令□-○=11,□+○=29.
解得,□=20,○=9.故11×29=202-92.(5分)
(或11×29=(20-9)(20+9)=202-92.5分)

(2)这10个乘积按照从小到大的顺序依次是:11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20.(7分)

(3)①若a+b=40,a、b是自然数,则ab≤202=400.(8分)
②若a+b=40,则ab≤202=400.(8分)
③若a+b=m,a、b是自然数,则ab≤(
m
2
)2
.(9分)
④若a+b=m,则ab≤(
m
2
)2
.(9分)
⑤若a1+b1=a2+b2=a3+b3=an+bn=40.且
|a1-b1|≥|a2-b2|≥|a3-b3|≥≥|an-bn|,
则a1b1≤a2b2≤a3b3≤≤anbn.(10分)
⑥若a1+b1=a2+b2=a3+b3=an+bn=m.且
|a1-b1|≥|a2-b2|≥|a3-b3|≥…≥|an-bn|,
则a1b1≤a2b2≤a3b3≤…≤anbn.(10分)
说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分);
给出结论⑤或⑥之一的得(3分).
点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

根据以下10个乘积,回答问题:
11×29;  12×28;   13×27;   14×26;   15×25;
16×24;  17×23;   18×22;   19×21;   20×20.
(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;
(2)将以上10个乘积按照从小到大的顺序排列起来;
(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

根据以下10个乘积,回答问题:
11×29;    12×28;    13×27;    14×26;    15×25;
16×24;    17×23;    18×22;    19×21;    20×20.
(1)试将以上各乘积分别写成一个“□2-□2”(两数平方差)的形式,并写出其中一个的思考过程;
(2)将以上10个乘积按照从小到大的顺序排列起来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

根据以下10个乘积,回答问题:
11×29;  12×28;  13×27;  14×26;  15×25;
16×24;  17×23;  18×22;  19×21;  20×20.
(1)试将以上各乘积分别写成一个“□2-□2”(两数平方差)的形式,并写出其中一个的思考过程;
(2)将以上10个乘积按照从小到大的顺序排列起来.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据以下10个乘积,回答问题:

11×29;  12×28;   13×27;   14×26;   15×25;

16×24;  17×23;   18×22;   19×21;   20×20.

(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;

(2)将以上10个乘积按照从小到大的顺序排列起来;

(3)试由⑴、⑵猜测一个一般性的结论.(不要求证明)

查看答案和解析>>

同步练习册答案