精英家教网 > 初中数学 > 题目详情
如图,AF、AD分别是△ABC的高和角平分线,且∠B=34°,∠C=74°,求∠DAF的度数.
分析:运用三角形的内角和定理即可求出∠BAC的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠BAF的度数,再由∠DAF=∠BAF-∠BAD即可得出结论.
解答:解:∵△ABC中,∠B=34°,∠C=74°
∴∠BAC=180°-∠B-∠C=72°;
∵AD是△ABC的角平分线,
∴∠BAD=
1
2
∠BAC=36°,
又∵AF是△ABC的高,
∴∠BAF=90°-∠B=90°-34°=56°,
∴∠DAF=∠BAF-∠BAD=56°-36°=20°.
点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图,点E、F分别在菱形ABCD的边BC、AD上,且AF=CE,∠BAE=25°,∠BCD=130°,求∠AFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点M、E分别在正方形ABCD的边AB、BC上,以M为圆心,ME的长为半径画弧,交AD边于点F.当
∠EMF=90°时,求证:AF=BM.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AD∥BC,梯形ABCD的面积是180,E是AB的中点,F是BC边上的点,且AF∥CD,AF分别交ED精英家教网,BD于G,H,设
BCAD
=m
,m是整数.
(1)若m=2,求△GHD的面积;
(2)若△GHD的面积为整数,求m的值.

查看答案和解析>>

科目:初中数学 来源:2012届部分学校九年级下学期联考数学卷 题型:解答题

(本题满分10分)如图,梯形ABCD中,AD∥BC,CE⊥AB于E,BF⊥CD于F,连接AF、DE.

【小题1】(1)如图1,若AB=CD,且E、F两点分别在BA和CD的延长线上,在图中找出一个与∠BFA相等的角,如:∠BFA=           
【小题2】(2)如图2,若AB≠CD,且E在BA的延长线上,F在CD上,则(1)的结论是否仍然成立?若成立,给出证明;若不成立,说明理由.
【小题3】(3)如图3,若AD⊥DE,AE=3AD,则tan∠BFA=           

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏启东东海中学八年级上第一次质量抽测数学试卷(解析版) 题型:解答题

如图,点D、B分别在∠A的两边上,C是∠A内一点,AB = AD,BC = CD,CE⊥AD于E,CF⊥AF于F.求证:CE = CF

                                           

 

查看答案和解析>>

同步练习册答案