精英家教网 > 初中数学 > 题目详情
17.如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.
(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD的形状,并说明理由.

分析 (1)连接AC,由题意得$\widehat{AD}$=$\widehat{CD}$=$\widehat{CB}$,∠DAC=∠CAB,即可证明AE∥OC,从而得出∠OCE=90°,即可证得结论;
(2)四边形AOCD为菱形.由$\widehat{AD}$=$\widehat{CB}$,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形).

解答 解:(1)连接AC,
∵点CD是半圆O的三等分点,
∴$\widehat{AD}$=$\widehat{CD}$=$\widehat{CB}$,
∴∠DAC=∠CAB,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠DAC=∠OCA,
∴AE∥OC(内错角相等,两直线平行)
∴∠OCE+∠E=180°,
∵CE⊥AD,
∴∠OCE=90°,
∴OC⊥CE,
∴CE是⊙O的切线;

(2)四边形AOCD为菱形.
理由是:
∵$\widehat{AD}$=$\widehat{CB}$,
∴∠DCA=∠CAB,
∴CD∥OA,
又∵AE∥OC,
∴四边形AOCD是平行四边形,
∵OA=OC,
∴平行四边形AOCD是菱形.

点评 本题考查了切线的判定、等腰三角形的性质、平行线的判定和性质、菱形的判定和性质,是中学阶段的重点内容.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章,记载了一道“折竹抵地”问题,叙述为:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”翻译成数学问题是:在Rt△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,可列出的方程为x2+32=(10-x)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)解方程:$\frac{1}{x-1}$=$\frac{3}{{x}^{2}-1}$
(2)解不等式组:$\left\{\begin{array}{l}{x-2(x-3)<6}\\{x-1≤\frac{x+1}{3}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列说法不正确的是(  )
A.在选举中,人们通常最关心的数据是众数
B.数据3,5,4,1,-2的中位数是3
C.一组数据1,1,0,2,4的平均数为2
D.甲、乙两人数学成绩的平均分都是95,方差分别是2.5和10.5,要选择一人参加数学竞赛,选甲比较稳定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,平行四边形ABCD中,∠B=60°,将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,角的两边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).
(1)问题发现:
如图1,若平行四边形ABCD为菱形,
试猜想线段AE、AF、AC之间的数量关系AE+AF=AC,请证明你的猜想.
(2)类比探究:
如图2,若AB:AD=1:2,过点C作CH⊥AD于点H,求AE:FH的比值;
(3)拓展延伸:
如图3,若AB:AD=1:4,请直接写出(AE+4AF):AC的比值为$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知直线y1=x+m与y2=kx-1相交于点P(-1,1),则关于x的不等式x+m<kx-1的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的上边作正方形ADEF,连接CF.
(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为:BC⊥CF;②BC、CD、CF之间的数量关系为:CF=BC-CD.
(2)数学思考:如图2,当点D在线段CB的延长线上时,以上①②关系是否成立,请在后面的横线上写出正确的结论.①BC与CF的位置关系为:BC⊥CF;②BC、CD、CF之间的数量关系为:CF=CD-BC.
(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GD,若已知AB=2$\sqrt{2}$,CD=$\frac{1}{4}$BC,请求出DG的长(写出求解过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.求证:四边形ADCE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如果$\sqrt{x-2}$有意义,那么x的取值范围是x≥2.

查看答案和解析>>

同步练习册答案