精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点EF分别在BCCD上,△AEF是等边三角形连接ACEFG,下列结论: BEDF,②∠DAF15°,③ACEF,④BE+DFEF,⑤ECFG;其中正确结论有( )

A.2B.3C.4D.5

【答案】B

【解析】

根据已知条件易证△ABE≌△ADF,根据全等三角形的性质即可判定①②;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,即可判定③;设EC=FC=x,由勾股定理和三角函数计算后即可判定④⑤.

四边形ABCD是正方形,

∴AB=BC=CD=AD∠B=∠BCD=∠D=∠BAD=90°

∵△AEF等边三角形,

∴AE=EF=AF∠EAF=60°

∴∠BAE+∠DAF=30°

Rt△ABERt△ADF中,

,

Rt△ABE≌Rt△ADFHL),

∴BE=DF(故正确).

∠BAE=∠DAF

∴∠DAF+∠DAF=30°

∠DAF=15°(故正确),

∵BC=CD

∴BC-BE=CD-DF,即CE=CF

∵AE=AF

∴AC垂直平分EF.(故正确).

EC=FC=x,由勾股定理,得:

,

ECFG(⑤错误)

RtAEG中,

,

,

,

,

,(故错误),

综上所述,正确的结论为①②③,共3个,

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,图中AB=ACAD=AE,∠BAC=∠EAD=90°B,C,E在同一条直线上,连结DC

(1)图2中的全等三角形是_______________,并给予证明(说明:结论中不得含有未标识的字母);

2)指出线段DC和线段BE的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 中,D BC 边的中点,E、F 分别在 AD 及其延长线上,CEBF,连接BE、CF.

(1)求证:BDF ≌△CDE;

(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图案中既是中心对称图形,又是轴对称图形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点Ax轴上,坐标为(0,3),点Bx轴上.

(1)在坐标系中求作一点M,使得点M到点A,点B和原点O这三点的距离相等,在图中保留作图痕迹,不写作法;

(2)若sinOAB=,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角三角形ABC中,∠BAC90°,DAC的中点,ECBDE,交BA的延长线于F,若BF12,则△BDC的面积是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线(m>0)的顶点为A,直线轴的交点为点B.

(1)求出抛物线的对称轴及顶点A的坐标(用含的代数式表示);

(2)证明点A在直线上,并求∠OAB的度数;

(3)动点Q在抛物线对称轴上,问:抛物线上是否存在点P,使以点P、Q、A为顶点的三角形与OAB全等?若存在,求出的值,并写出所有符合上述条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ACF≌△DBE,其中点ABCD在一条直线上.

1)若BEAD,∠F=62°,求∠A的大小.

2)若AD=9cmBC=5cm,求AB的长.

查看答案和解析>>

同步练习册答案