精英家教网 > 初中数学 > 题目详情

已知:如图,x轴、y轴为正方形ABCD的对称轴 , 若正方形的边长为1 ,则各顶点的坐标是

A ______ , B______ , C______ , D______

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1.
(1)求BC、AP1的长;
(2)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(3)以点E为圆心作⊙E与x轴相切.
①探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围;
②当直线L把矩形ABCD分成两部分的面积之比值为3:5时,则⊙P和⊙E的位置关系如何并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为
AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1,
(Ⅰ)求BC、AP1的长;
(Ⅱ)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(Ⅲ)以点E为圆心作⊙E与x轴相切,探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,抛物线C1y=
1
3
(x-m)2+n
(m>0)的顶点为A,与y轴相交于点B,抛物线C2y=-
1
3
(x+m)2-n
的顶点为C,并与y轴相交于点D,其中点A、B、C、D中的任意三点都不在同一条直线
(1)判断四边形ABCD的形状,并说明理由;
(2)如图2,若抛物线y=
1
3
(x-m)2+n
 (m>0)的顶点A落在x轴上时,四边形ABCD恰好是正方形,请你确定m,n的值;
(3)是否存在m,n的值,使四边形ABCD是邻边之比为1:
3
 的矩形?若存在,请求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)在x轴上是否存在点M,使得△ACM是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.△CQE的面积S是否有最大值?如果有最大值,请求出这个最大值,并求出点Q的坐标.

查看答案和解析>>

同步练习册答案