精英家教网 > 初中数学 > 题目详情
如图,已知点A为⊙O内一点,点B、C均在圆上,∠A=∠B=45°,∠C=30°,线段OA=-1.求阴影部分的面积(结果保留π)

【答案】分析:延长AO交BC于点D,连接OB,由∠A=∠ABC=45°,得到AD=BD,∠ADB=90°,即AD⊥BC.根据垂径定理得到BD=CD.在Rt△COD中,设OD=x,∠C=30°,得到OC=2x,CD=x=AD,则OA=AD-OD=x-x=(-1)x=-1,解得x=1,则OD=1,OC=2,BC=2CD=2,分别利用三角形和扇形的面积公式计算S扇形OBC,和S△COB,然后利用S阴影=S扇形OBC-S△COB计算即可.
解答:解:延长AO交BC于点D,连接OB.
∵∠A=∠ABC=45°,
∴AD=BD,∠ADB=90°,即AD⊥BC.
∴BD=CD.
在Rt△COD中,设OD=x,
∵∠C=30°,
∴∠COD=60°,OC=2x,CD=x.
∴∠COB=120°,AD=x.
∴OA=AD-OD=x-x=(-1)x.
而OA=-1,
∴x=1,即OD=1,OC=2,BC=2CD=2
∴S阴影=S扇形OBC-S△COB=π×22-×2×1=π-
点评:本题考查了扇形的面积公式:S=(n为圆心角的度数,R为圆的半径).也考查了含30度得直角三角形三边的关系和三角形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知点C为线段AE上一点,AE=8cm,△ABC和△CDE为AE同侧的两个等边三角形,连接BE交CD于N,连接AD交BC于M,连接MN.
(1)求证:AD=BE;
(2)求证:MN∥AE;
(3)若点C在AE上运动(点C不与A、E重合),当点C运动到什么位置时,线段MN的长度最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙湖区模拟)如图,已知点P为反比例函数y=
4x
的图象上的一点,过点P作横轴的垂线,垂足为M,则△OPM的面积为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•玉林)如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.
(1)求证:AE平分∠CAB;
(2)探求图中∠1与∠C的数量关系,并求当AE=EC时tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为△ABC中AC边上一点,且AD:DC=3;4,设
BA
=
a
BC
b

(1)在图中画出向量
BD
分别在
a
b
方向上的分向量;
(2)试用
a
b
的线性组合表示向量
BD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为等腰直角△ABC内一点,AC=BC,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.若DE=acm,BD=bcm(a>b),则CD=
a-b
a-b
cm.

查看答案和解析>>

同步练习册答案