【题目】某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排名工人采摘蓝莓,剩下的工人加工蓝莓.
(1)若基地一天的总销售收入为元,求与的函数关系式;
(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.
【答案】(1)(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元
【解析】
试题分析:(1)根据题意可知x人参加采摘蓝莓,则(20-x)人参加加工,可分别求出直接销售和加工销售的量,然后乘以单价得到收入钱数,列出函数的解析式;
(2)根据采摘量和加工量可求出x的取值范围,然后根据一次函数的增减性可得到分配方案,并且求出其最值.
试题解析:(1)根据题意得:.
(2)因为,解得,又因为为正整数,且.
所以,且为正整数.
因为,所以的值随着的值增大而减小,
所以当时,取最大值,最大值为.
答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.
科目:初中数学 来源: 题型:
【题目】学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
一等奖 | 二等奖 | 三等奖 |
1盒福娃和1枚徽章 | 1盒福娃 | 1枚徽章 |
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与抛物线相交于A、B两点,与轴交于点M,M、N关于轴对称,连接AN、BN.
(1)①求A、B的坐标;
②求证:∠ANM=∠BNM;
(2)如图,将题中直线变为,抛物线变为,其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com