精英家教网 > 初中数学 > 题目详情
如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为(    )
A.cmB.9 cmC.cmD.cm
D

试题分析:

连接OA、OB、OE,
∵四边形ABCD是正方形,
∴AD=BC,∠ADO=∠BCO=90°,
∵在Rt△ADO和Rt△BCO中

∴Rt△ADO≌Rt△BCO,
∴OD=OC,
∵四边形ABCD是正方形,
∴AD=DC,
设AD=acm,则OD=OC=DC=AD=acm,
在△AOD中,由勾股定理得:OA=OB=OE=acm,
∵小正方形EFCG的面积为16cm2
∴EF=FC=4cm,
在△OFE中,由勾股定理得:
解得:a=-4(舍去),a=8,
(cm),
故选D.
点评:本题考查了全等三角形的性质和判定,勾股定理的应用,主要考查学生运用定理进行计算的能力,用的数学思想是方程思想.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º.

(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径为1cm. ⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0).
(1)当t=1时,AB=            cm;当t=6时,AB=            cm;
(2)问点A出发后多少秒两圆相切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:

(1) 请在图中确定该圆弧所在圆心D点的位置,D点坐标为________;
(2) 连接AD、CD,求⊙D的半径(结果保留根号)及扇形ADC的圆心角度数;
(3) 若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径 (结果保留根号).                       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.

(1)求证:PC是⊙O的切线.
(2)若AF=1,OA=,求PC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正三角形的高、外接圆半径、边心距之比为(        )
A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB⊙O的直径,弦CD⊥AB,垂足为E,连AC、BC,若∠BAC=30°,CD=6cm,

(1)求∠BCD度数;
(2)求⊙O的直径。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形ABCD与它的外接圆之间形成了四个相等的弓形(阴影部分),已知阴影部分的面积之和是45.6平方分米,求圆的面积是________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,AB=3cm,AC=4cm,∠A=900, 则以AB所在直线为轴旋转一周
所得的圆锥的表面积为              .

查看答案和解析>>

同步练习册答案