精英家教网 > 初中数学 > 题目详情

如图,矩形OABC在平面直角坐标系中的位置如图所示,OA=3,AB=2.抛物线y=ax2+bx+c(a≠0)经过点A和点B,与x轴分别交于点D、E(点D在点E左侧),且OE=1,则下列结论:
①a>0;②c>3;③2a-b=0;④4a-2b+c=3;⑤连接AE、BD,则S梯形ABDE=9.
其中正确结论的个数为


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:由抛物线开口向下得到a小于0,故选项①错误,由OA的长得出A的坐标,可得出c的值,判断选项②错误;由A和关于对称轴对称,且根据AB的长,得出抛物线的对称轴为直线x=-1,利用对称轴公式可得出a与b的关系式,整理后即可对选项③作出判断;由OA与AB的长,求出B的坐标,将B的坐标代入抛物线解析式中得到a,b及c的关系式,即可对选项④作出判断;由对称性得到CD=OE,由OE的长求出CD的长,再由CD+OC+OE求出DE的长,即为梯形的下底,上底为AB,高为OA,利用梯形的面积公式即可求出梯形ABDE的面积,即可对选项⑤作出判断,综上,得到正确选项的个数.
解答:由函数图象可得:抛物线开口向下,
∴a<0,选项①错误;
又OA=3,AB=2,
∴抛物线与y轴交于A(0,3),即c=3,选项②错误;
又A和B关于对称轴对称,且AB=2,
∴对称轴为直线x=-=-1,即2a-b=0,选项③正确;
∴B(-2,3),
将x=-2,y=3代入抛物线解析式得:4a-2b+c=3,选项④正确;
由OE=1,利用对称性得到CD=OE=1,又OC=AB=2,
∴DE=CD+OC+OE=1+2+1=4,又OA=3,
则S梯形ABDE=OA(AB+DE)=9,选项⑤正确,
综上,正确的个数为3个.
故选C.
点评:此题考查了二次函数图象与系数的关系,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做本题时注意灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足|OA-2|+(OC-2
3
)2=0

(1)求B、C两点的坐标;
(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式;
(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形OABC在平面直角坐标系中的位置如图所示,OA=3,AB=2.抛物线y=ax2+bx+c(a≠0)经过点A和点B,与x轴分别交于点D、E(点D在点E左侧),且OE=1,则下列结论:
①a>0;②c>3;③2a-b=0;④4a-2b+c=3;⑤连接AE、BD,则S梯形ABDE=9.
其中正确结论的个数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昆明)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浙江二模)如图,矩形OABC在平面直角坐标系中,A(0,3),C(4,0),点P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q,当△POQ为等腰三角形时,点P坐标为
P1(1,3),P2(7,3)
P1(1,3),P2(7,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•淮安)如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135°,得到矩形EFGH(点E与O重合).
(1)若GH交y轴于点M,则∠FOM=
45
45
°,OM=
2
2
2
2

(2)将矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤4
2
-2时,S与t之间的函数关系式.

查看答案和解析>>

同步练习册答案