【题目】如图,抛物线 与x轴的负半轴交于点A,与y轴交于点B,连结AB.点C 在抛物线上,直线AC与y轴交于点D.
(1)求c的值及直线AC的函数表达式;
(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m , 求AN的长(用含m的代数式表示).
【答案】
(1)
解:把点C(6,)代入抛物线得:=9++c.
解得c=-3.
当y=0时,x2+x-3=0.
解得:x1=-4,x2=3.
∴A(-4,0).
设直线AC的函数表达式为:y=kx+b(k≠0).
把A(-4,0),C(6, )代入得:
解得:
∴直线AC的函数表达式为:y=x+3.
(2)
①证明:∵在Rt△AOB中,tan∠OAB==.
在Rt△AOB中,tan∠OAD==.
∴∠OAB=∠OAD.
∵在Rt△POQ中,M为PQ中点.
∴OM=MP.
∴∠MOP=∠MPO.
又 ∵∠MOP=∠AON.
∴∠APM=∠AON.
∴△APM∽△AON.
②解:如下图,过点M作ME⊥x轴于点E.
∵OM=MP.
∴OE=EP.
又∵点M的横坐标为m.
∴AE=m+4,AP=2m+4.
∵tan∠OAD=.
∴cos∠EAM=cos∠OAD=.
∴AM=AE=.
∵△APM∽△AON.
∴=.
∴AN==.
【解析】(1)把点C(6,)代入抛物线求出c的值,令y=0求出A点坐标,再用待定系数法求出直线AC的函数表达式.
(2)①在Rt△AOB中,tan∠OAB==. 在Rt△AOB中,tan∠OAD==.从而得出∠OAB=∠OAD;在Rt△POQ中,M为PQ中点得出OM=MP.∠APM=∠AON;从而证明△APM∽△AON.
②如上图,过点M作ME⊥x轴于点E;由OM=MP.得出OE=EP;点M的横坐标为m;得出AE=m+4,AP=2m+4.
根据tan∠OAD=.求出cos∠EAM=cos∠OAD=;再根据△APM∽△AON;得出AN==.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.
(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;
(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,
①∠MON与旋转度数n°有怎样的数量关系?说明理由;
②当n为多少时,∠MON为直角?
(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读)|4﹣1|表示4与1差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.
(1)|4﹣(﹣1)|=
(2)|5+2|=
(3)利用数轴找出所有符合条件的整数x,使得|x+3|=5,则x= .
(4)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣2|=5,这样的整数是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的关系是___;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,第2018次输出的结果为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在下列表格中填上相应的值
x | … | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | … |
… | -1 | -2 | 3 | 1 | … |
(2)若将上表中的变量用y来代替(即有),请以表中的的值为点的坐标, 在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点
(3)在(2)的条件下,可将y看作是x的函数 ,请你结合你所画的图像,写出该函数图像的两个性质 :__________________________________________________.
(4)结合图像,借助之前所学的函数知识,直接写出不等式的解集: ____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.
(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.
(2)A景区与C景区之间的距离是多少?
(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+ x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,动点P在线段BC上以每秒2个单位长的速度由点C向B 运动.设 动点P的运动时间为t秒
(1)当t为何值时,四边形PODB是平行四边形?
(2)在直线CB上是否存在一点Q,使得O、D、Q、P四点为顶点的四边形是菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由。
(3) 在线段PB上有一点M,且PM=5,当P运动 秒时,四边形OAMP的周长最小, 并画图标出点M的位置。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com