4£®ÉèÅ×ÎïÏßy=$\frac{1}{2}$x2+mx+nÓëxÖá½»ÓÚÁ½¸ö²»Í¬µÄµãA£¨-1£¬0£©¡¢B£¨4£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©ÒÑÖªµãC£¨2£¬k £©ÔÚÅ×ÎïÏßÉÏ£¬¹ýµãAµÄÖ±Ïßy=x+1½»Å×ÎïÏßÓÚÁíÒ»µãE£®
¢ÙÌî¿Õ£ºk=-3£¬µãEµÄ×ø±êΪ£¨6£¬7£©£®
¢ÚÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔµãP¡¢A¡¢CΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AEBÏàËÆ£¬Èô´æÔÚ£¬ÇóµãPµÄ×ø±ê£»²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¢ÛÈôÔÚÅ×ÎïÏßÉÏ´æÔÚÒ»µãM£¬ÔÚyÖáÉÏ´æÔÚµãN£¬Ê¹µÃÒÔµãA¡¢E¡¢M¡¢NΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÇëÖ±½Óд³öËùÓеãNµÄ×ø±ê£¨0£¬5£©£¬£¨0£¬4£©£¨0£¬40£©£®

·ÖÎö £¨1£©°ÑA£¨-1£¬0£©¡¢B£¨4£¬0£©´úÈëy=$\frac{1}{2}$x2+mx+n½â·½³Ì×é¼´¿É£®
£¨2£©¢ÙÀûÓôý¶¨ÏµÊý·¨£¬½â·½³Ì×é¼´¿É½â¾öÎÊÌ⣮
¢ÚÊ×ÏÈÖ¤Ã÷¡ÏEAB=¡ÏCAB=45¡ã£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
¢Û·ÖÁ½ÖÖÇéÐÎa¡¢µ±AEΪ±ßʱ£¬AE=M1N1=7$\sqrt{2}$£¬ÍƳöM1£¨7£¬12£©£¬N1£¨0£¬5£©£®»òM3N3=AE=7$\sqrt{2}$£®ÍƳöM3£¨-7£¬33£©£¬N3£¨0£¬40£©£®b¡¢AEΪ¶Ô½ÇÏßʱ£¬M2£¨5£¬3£©£¬µÃ³öN2£¨0£¬4£©£®

½â´ð ½â£º£¨1£©°ÑA£¨-1£¬0£©¡¢B£¨4£¬0£©´úÈëy=$\frac{1}{2}$x2+mx+nµÃ
$\left\{\begin{array}{l}{\frac{1}{2}-m+n=0}\\{8+4m+n=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=-\frac{3}{2}}\\{n=-2}\end{array}\right.$
¡àÅ×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{3}{2}$x-2£®

£¨2£©¢Ùx=2ʱ£¬y=2-3-2=-3£¬
¡àk=-3£¬
ÓÉ$\left\{\begin{array}{l}{y=x+1}\\{y=\frac{1}{2}{x}^{2}-\frac{3}{2}x-2}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=6}\\{y=7}\end{array}\right.$£¬
¡àE£¨6£¬7£©
¹Ê´ð°¸Îª-3£¬6£¬7£®

¢ÚÈçͼ1ÖУ¬¹ýE×÷ED¡ÍXÖáÓÚµã D£®

¡ßA£¨-1£¬0£©£¬E£¨6£¬7£©£¬
¡àAD=ED=7£¬
¡à¡ÏEAD=45¡ã£¬
ͬÀí¡ÏCAB=45¡ã
Èô¡÷PACÓë¡÷AEBÏàËÆ
Ôò$\frac{AE}{AB}$=$\frac{PA}{AC}$»ò$\frac{AE}{AB}$=$\frac{AC}{PA}$£¬
½âµÃPA=$\frac{42}{5}$»òPA=$\frac{45}{7}$£¬
¡àP£¨$\frac{37}{5}$£¬0£©»òP£¨$\frac{8}{7}$£¬0£©£®

¢ÛÈçͼ2ÖУ¬

a¡¢µ±AEΪ±ßʱ£¬AE=M1N1=7$\sqrt{2}$£¬
¡àM1£¨7£¬12£©£¬N1£¨0£¬5£©£®
»òM3N3=AE=7$\sqrt{2}$£®
¡àM3£¨-7£¬33£©£¬N3£¨0£¬40£©£®
b¡¢AEΪ¶Ô½ÇÏßʱ£¬M2£¨5£¬3£©£¬
¡àN2£¨0£¬4£©£®
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãN×ø±êΪ£¨0£¬5£©£¬£¨0£¬4£©£¨0£¬40 £©£®
¹Ê´ð°¸Îª£¨0£¬5£©£¬£¨0£¬4£©£¨0£¬40 £©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢´ý¶¨ÏµÊý·¨¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»á·ÖÀàÌÖÂÛ£¬×¢Òâ²»ÄÜ©½â£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬·½¸ñÖ½ÖС÷ABCµÄ3¸ö¶¥µã·Ö±ðÔÚСÕý·½ÐεĶ¥µã£¨¸ñµã£©ÉÏ£¬ÕâÑùµÄÈý½ÇÐνиñµãÈý½ÇÐΣ¬Í¼ÖÐÓë¡÷ABCÈ«µÈµÄ¸ñµãÈý½ÇÐι²ÓÐ3¸ö£¨²»º¬¡÷ABC£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¼ÆËãsin230¡ã-cos45¡ãtan60¡ã+$\frac{{sin{60¡ã}}}{{cos{45¡ã}}}$-tan45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺
£¨1£©3$\sqrt{\frac{1}{3}}$-$\frac{\sqrt{6}}{\sqrt{2}}$£»
£¨2£©£¨2-$\sqrt{2}$£©£¨3+2$\sqrt{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªµã£¨-1£¬y1£©£¬£¨1£¬y2£©£¬£¨-2£¬y3£©ÔÚº¯Êýy=x2+2x+mµÄͼÏóÉÏ£¬Ôòy1£¬y2£¬y3µÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®y1£¾y2£¾y3B£®y2£¾y1£¾y3C£®y2£¾y3£¾y1D£®y3£¾y1£¾y2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬ÁâÐÎABCDµÄÖܳ¤Îª8cm£¬¸ßAE³¤Îª$\sqrt{3}$cm£¬Ôò¶Ô½ÇÏßAC³¤ºÍBD³¤Ö®±ÈΪ1£º$\sqrt{3}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚ-1$\frac{1}{2}$£¬1.2£¬|-2|£¬0£¬-42£¬-£¨-2£©ÖУ¬¸ºÊýµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚʵÊý¦Ð£¬-$\frac{2}{5}$£¬0£¬-3.14£¬6.1010010001¡­ÖÐÎÞÀíÊýÓУ¨¡¡¡¡£©
A£®1 ¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆËã
£¨1£©£¨-1£©¡Á£¨-8£©
£¨2£©£¨-1$\frac{1}{4}$£©¡Á£¨+4£©
£¨3£©0¡Â£¨-2-2£©
£¨4£©3¡Â$\frac{1}{3}$¡Á3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸