精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c与x轴交于点B(1,0),C(-3,0),且过点A(3,6).
(1)求a、b、c的值;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,连接CP、PB、BQ,试求四边形PBQC的面积.

【答案】分析:(1)此题告诉了二次函数与x轴的两个交点坐标,所以采用两点式求解比较简单;
(2)根据抛物线的解析式即可求得顶点P的坐标,求得直线AC的解析式,即可求得点Q的坐标,然后将四边形PBQC分成两个三角形△BCQ与△PBC,分别求解这两个三角形的面积即可.
解答:解:(1)由题意可设y=a(x-1)(x+3),
代入点A(3,6),得a=
∴y=x2+x-
∴a=,b=1,c=-

(2)y=(x+1)2-2
∴顶点P(-1,-2).
设直线AC的解析式为y=kx+m,由题意得
-3k+m=0,3k+m=6.
解得k=1,m=3,
∴y=x+3.
抛物线对称轴为直线x=-1:交x轴于点D
∴点Q(-1,2):
则DC=DB=DQ=DP=2,
∴S四边形PBOC=8.
点评:此题考查了二次函数与一次函数以及四边形的综合知识,解题时要注意待定系数法求函数解析式的应用,要注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案