精英家教网 > 初中数学 > 题目详情
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取=5)

【答案】分析:(1)依题意代入x的值可得抛物线的表达式.
(2)令y=0可求出x的两个值,再按实际情况筛选.
(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得
2=-(x-6)2解得x的值即可知道CD、BD.
解答:解:(1)(3分)如图,设第一次落地时,
抛物线的表达式为y=a(x-6)2+4.(1分)
由已知:当x=0时y=1,
即1=36a+4,
∴a=-(2分)
∴表达式为y=-(x-6)2+4,(3分)
(或y=-x2+x+1).

(2)令y=0,-(x-6)2+4=0,
∴(x-6)2=48.
x1=4+6≈13,x2=-4+6<0(舍去).(2分)
∴足球第一次落地距守门员约13米.(3分)

(3)解法一:如图,第二次足球弹出后的距离为CD
根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位)
∴2=-(x-6)2+4解得x1=6-2,x2=6+2(2分)
∴CD=|x1-x2|=4≈10(3分)
∴BD=13-6+10=17(米).(4分)
解法二:令-(x-6)2+4=0
解得x1=6-4(舍),x2=6+4≈13.∴点C坐标为(13,0).(1分)
设抛物线CND为y=-(x-k)2+2(2分)
将C点坐标代入得:
-(13-k)2+2=0
解得:k1=13-2(舍去),k2=6+4+2≈6+7+5=18(3分)
令y=0,0=-(x-18)2+2,x1=18-2(舍去),x2=18+2≈23,
∴BD=23-6=17(米).
解法三:由解法二知,k=18,
所以CD=2(18-13)=10,
所以BD=(13-6)+10=17.
答:他应再向前跑17米.(4分)
点评:这是一道比较新颖的二次函数应用问题,解题的关键是要有建模思想,将题目中的语句转化为数学语言,这样才能较好的领会题意并运用自己的知识解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上精英家教网弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式;
(2)足球第一次落地点C距守门员多少米?(取4
3
=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取2
6
=5)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取4
3
=7
2
6
=5

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(吉林长春卷)数学(带解析) 题型:解答题

如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.

(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点距守门员多少米?(取
(3)运动员乙要抢到第二个落点,他应再向前跑多少米?
(取

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江杭州翠苑中学九年级上学期10月质量检测数学试卷(解析版) 题型:解答题

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.

(1)求足球开始飞出到第一次落地时,该抛物线的表达式.

(2)足球第一次落地点C距守门员多少米?(取

(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取

 

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(吉林长春卷)数学(解析版) 题型:解答题

如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.

(1)求足球开始飞出到第一次落地时,该抛物线的表达式.

(2)足球第一次落地点距守门员多少米?(取

(3)运动员乙要抢到第二个落点,他应再向前跑多少米?

(取

 

查看答案和解析>>

同步练习册答案