精英家教网 > 初中数学 > 题目详情
6.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为${y}_{1}=\left\{\begin{array}{l}{{k}_{1}x(0≤x<600)}\\{{k}_{2}x+b(600≤x≤1000)}\end{array}\right.$,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

分析 (1)将x=600、y=18000代入y1=k1x可得k1;将x=600、y=18000和x=1000、y=26000代入y1=k2x+b可得k2、b.
(2)分0≤x<600和600≤x≤1000两种情况,根据“绿化总费用=种草所需总费用+种花所需总费用”结合二次函数的性质可得答案;
(3)根据种草部分的面积不少于700m2,栽花部分的面积不少于100m2求得x的范围,依据二次函数的性质可得.

解答 解:(1)将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;
将x=600、y=18000和x=1000、y=26000代入,得:$\left\{\begin{array}{l}{600{k}_{2}+b=18000}\\{1000{k}_{2}+b=26000}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{k}_{2}=20}\\{b=6000}\end{array}\right.$;

(2)当0≤x<600时,
W=30x+(-0.01x2-20x+30000)=-0.01x2+10x+30000,
∵-0.01<0,W=-0.01(x-500)2+32500,
∴当x=500时,W取得最大值为32500元;
当600≤x≤1000时,
W=20x+6000+(-0.01x2-20x+30000)=-0.01x2+36000,
∵-0.01<0,
∴当600≤x≤1000时,W随x的增大而减小,
∴当x=600时,W取最大值为32400,
∵32400<32500,
∴W取最大值为32500元;

(3)由题意得:1000-x≥100,解得:x≤900,
由x≥700,
则700≤x≤900,
∵当700≤x≤900时,W随x的增大而减小,
∴当x=900时,W取得最小值27900元.

点评 本题主要考查二次函数的应用,掌握待定系数法求函数解析式及分类讨论依据相等关系列出函数解析式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.已知a、b是一元二次方程x2-x-2018=0的两个实数根,则代数式a2-2a-b的值等于2017.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),已知△ABC三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).
(1)经过怎样的平移,可使△ABC的顶点A与坐标原点O重合,画出平移后的三角形△OB′C′;
(2)已知△ABC的重心G的坐标为(a,b),请直接写出△OB′C′的重心G的坐标(分别用a、b的代数式表示);
(3)将△ABC绕坐标原点O逆时针旋转90°,得到△A″B″C″,画出△A″B″C″.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{3}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
(1)若AC=4,BC=2,求OE的长.
(2)试判断∠A与∠CDE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:
(1)生产A,B两种产品的方案有哪几种;
(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与$\widehat{AB}$交于点D,以O为圆心,OC的长为半径作$\widehat{CE}$交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为$\frac{4}{3}$π+2$\sqrt{3}$.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图是某个几何体的展开图,该几何体是(  )
A.三棱柱B.圆锥C.四棱柱D.圆柱

查看答案和解析>>

同步练习册答案