精英家教网 > 初中数学 > 题目详情
5.“五一期间”某公司在一块平行四边形ABCD的湖中,立有一个旗杆MN,MN与湖面垂直,旗杆顶端M与湖岸的E、F两处用绳子相连.绳子上系满了彩旗.且直线EF经过旗杆底部N,EF∥AB,已知,AB=40($\sqrt{3}$+1)m.BC=30m.∠MEN=60°,∠MFN=45°,求绳子EM的长.

分析 由平行四边形的判定与性质得到EF=AB,在直角△MNF和直角△MEN中利用勾股定理来求EM的长度.

解答 解:设EN=x,
∵∠MEN=60°,∠ENM=90°,
∴EM=2x,MN=$\sqrt{3}$x,
∵∠MFN=45°,
∴MN=NF=$\sqrt{3}$x,
由题意可得:AB=EF=EN+NF=x+$\sqrt{3}$x=40($\sqrt{3}$+1),
解得:x=40,
则EN=80(m).
答:绳子EM的长为80m.

点评 此题主要考查了平行四边形的性质以及锐角三角函数关系,得出EN的值是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,△ABC内接于⊙O,若∠BAC=30°,BC=2,则⊙O的半径为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,矩形纸片AOCB,以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,折叠纸片,使点C与点A重合,点B落在点B′处,折痕为EF,若顶点B的坐标为(9,3),求点E、F、B′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒$\frac{π}{2}$个单位长度,则第2017秒时,点P的坐标是(2017,1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,已知直线y=-$\frac{3}{4}$x+6与x轴、y轴分别交于A、B两点,点C在直线y=-x上,若点D与A,B,C是平行四边形的四个顶点,则线段CD长的最小值为7$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人,将264000用科学记数法表示应为(  )
A.264×103B.2.64×104C.2.64×105D.0.264×106

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.
(1)如图1,⊙O的半径为2,
①点A(0,1),B(4,3),则d(A,⊙O)=1,d(B,⊙O)=3.
②已知直线l:y=$\frac{3}{4}x+b$与⊙O的密距d(l,⊙O)=$\frac{6}{5}$,求b的值.
(2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=-$\frac{\sqrt{3}}{3}x$$+\frac{4\sqrt{3}}{3}$与x轴交于点D,与y轴交于点E,线段DE与⊙C的密距d(DE,⊙C)<$\frac{1}{2}$.请直接写出圆心C的横坐标m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:2sin45°-($π-\sqrt{5}$)0$+(\frac{1}{2})^{-1}$$+|\sqrt{2}-1|$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.现有一副扑克牌中的3张牌,牌面数字分别为7、9、9,从中随机抽取一张然后放回,再随机抽取一张.用画树状图(或列表)的方法,求抽取的两张牌面数字相同的概率.

查看答案和解析>>

同步练习册答案