精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=6,AD=4,则斜边AB的长为________.

9
分析:在Rt△ABC中,CD是斜边上的高,易证得△ACD∽△ABC,根据相似三角形得出的关于AC、AB、AD的比例关系式即可求得斜边AB的长.
解答:Rt△ABC中,∠C=90°,CD⊥AB;
∴∠ADC=∠ACB=90°;
又∵∠A=∠A,
∴△ADC∽△ACB;
∴AC2=AD•AB,即AB=AC2÷AD=9.
点评:此题主要考查了相似三角形的判定和性质,此题中所证得的结论实际是直角三角形的射影定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案