【题目】如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB=∠CAD,过点A作⊙O的切线,交CD的延长线于点E.
(1)判定直线CD与⊙O的位置关系,并说明你的理由;
(2)若CB=4,CD=8,①求圆的半径.②求ED的长.
【答案】(1)直线CD是⊙O的切线,见解析;(2)①见解析,②12
【解析】
(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO=90°,根据切线的判定推出即可;
(2)①证明△CDB∽△CAD,可得,可求出AC,则AB可求出;
②求出OC和OD,证明OCD∽△ECA,得到,求出EC,即可求得ED的长.
(1)证明:连接OD,
∵OD=OB,
∴∠DBA=∠BDO,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDB=∠CAD,
∴∠CDB+∠BDO=90°,
即OD⊥CE,
∵D为⊙O的一点,
∴直线CD是⊙O的切线;
(2)①∵OD=OB,
∴∠ODB=∠OBD,
∵∠BDC+∠ODB=90°,∠DAB+∠ABD=90°,
∴∠BDC=∠DAB,
∵∠DCB=∠ACD,
∴△CDB∽△CAD,
∴,
∴AC==16,
∴AB=AC﹣BC=16﹣4=12,
∴圆的半径为6;
②∵OD=OB=6,
∴OC=OB+BC=10,
∵过点A作的⊙O切线交CD的延长线于点E,
∴EA⊥AC,
∵OD⊥CE,
∴∠ODC=∠EAC=90°,
∵∠OCD=∠ECA,
∴△OCD∽△ECA,
∴,即,
∴EC=20,
∴ED=EC﹣CD=20﹣8=12.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n)两点.
(1)求反比例函数的解析式;
(2)过B点作BC⊥x轴,垂足为C,若P是反比例函数图象上的一点,连接PC,PB,求当△PCB的面积等于5时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车专卖店经销某种型号的汽车已知该型号汽车的进价为10万元/辆,经销一段时间后发现:当该型号汽车售价定为20万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆
(1)若每辆汽车的售价降低x万元,则每周的销售量是 辆(用含x的代数式表示)
(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,需将每辆汽车的售价降低多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.
(1)求直线AC解析式;
(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;
(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.如图,在△ABC中,AB>AC,点D,E分别在AB,AC上,设CD,BE相交于点O,如果∠A是锐角,∠DCB=∠EBC=∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解了解了解较少不了解”四类分别统计,并绘制了下列两幅统计图(不完整请根据图中信息,解答下列问题:
此次共调查了______名学生;
扇形统计图中D所在的扇形的圆心角为______;
将条形统计图补充完整;
若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),
(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;
(Ⅱ)不论a取何实数,该抛物线都经过定点H.
①求点H的坐标;
②证明点H是所有抛物线顶点中纵坐标最大的点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点B的坐标是(-2,0),点C的坐标是(8,0),以线段BC为直径作⊙A,交y轴的正半轴于点D,过B、C、D三点作抛物线.
(1)求抛物线的解析式;
(2)连结BD,CD,点E是BD延长线上一点,∠CDE的角平分线DF交⊙A于点F,连结CF,在直线BE上找一点P,使得△PFC的周长最小,并求出此时点P的坐标;
(3)在(2)的条件下,抛物线上是否存在点G,使得∠GFC=∠DCF,若存在,请直接写出点G的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com