【题目】如图,AP,CP分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=α.
(1)用α表示∠ACP;
(2)求证:AB∥CD;
(3)若AP∥CF,求证:FC平分∠DCE.
【答案】(1)∠CAP=90°-α; (2)证明见解析;(3)证明见解析;
【解析】试题分析:(1)由角平分线的定义可得∠PAC=α,在Rt△PAC中根据直角三角形的性质可求得∠ACP;
(2)结合(1)可求得∠ACD,可证明∠ACD+∠BAC=180°,可证明AB∥CD;
(3)由平行线的性质可得∠ECF=∠CAP,∠ECD=∠CAB,结合条件可证得∠ECF=∠FCD,可证得结论.
试题解析:(1)解:∵AP平分∠BAC,∴∠CAP=∠BAP=α.
∵∠P=90°,∴∠ACP=90°-∠CAP=90°-α;
(2)证明:由(1)可知∠ACP=90°-α.
∵CP平分∠ACD,∴∠ACD=2∠ACP=180°-2α.
又∠BAC=2∠BAP=2α,∴∠ACD+∠BAC=180°,∴AB∥CD;
(3)证明:∵AP∥CF,∴∠ECF=∠CAP=α.
由(2)可知AB∥CD,∴∠ECD=∠CAB=2α,∴∠DCF=∠ECD-∠ECF=α,∴∠ECF=∠DCF,∴CF平分∠DCE.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.
(1)求∠ECF的度数;
(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
(1)求证:四边形FBGH是菱形;
(2)求证:四边形ABCH是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,在内并排不重叠放入边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放 个小正方形纸片.
A. 14个 B. 15个 C. 16个 D. 17个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中有点A(0,1)、B(,0).
连接AB,以A为圆心,以AB为半径画弧,交y轴于点P1;
连接BP1,以B为圆心,以BP1为半径画弧,交x轴于点P2;
连接P1P2,以P1为圆心,以P1P2为半径画弧,交y轴于点P3;
按照这样的方式不断在坐标轴上确定点Pn的位置,那么点P6的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数 y=x+1 的图象与 y 轴交于点 A,一次函数 y=kx+b 的图象经过点 B(0,﹣1),与x 轴 以及 y=x+1 的图象分别交于点 C、D,且点 D 的坐标为(1,n),
(1)则n= ,k= ,b= ;
(2)函数 y=kx+b 的函数值大于函数 y=x+1 的函数值,则X的取值范围是 ;
(3)求四边形 AOCD 的面积;
(4)在 x轴上是否存在点 P,使得以点 P,C,D 为顶点的三角形是直角三角形?若存在求出点 P 的坐标; 若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若该方程有两个实数根,求m的最小整数值;
(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=-3x-2.
(1)如果y=x+1的-1分函数为y[-1],
①当x=4时,y[-1]______;当y[-1]=-3时,x=______.
②求双曲线y=与y[-1]的图象的交点坐标;
(2)如果y=-x+2的0分函数为y[0],正比例函数y=kx(k≠0)与y=-x+2的0分函数y[0]的图象无交点时,直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com