精英家教网 > 初中数学 > 题目详情
精英家教网如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为(  )
A、
7
3
π-
7
8
3
B、
4
3
π+
7
8
3
C、π
D、
4
3
π+
3
分析:整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为以点B为圆心,OB,BH为半径的两个扇形组成的一个环形.
解答:解:连接BH,BH1
∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,精英家教网
∴△OBH≌△O1BH1
利用勾股定理可求得BH=
4+3
=
7

所以利用扇形面积公式可得
120π(BH2-BC2
360
=
120π×(7-4)
360
=π.
故选C.
点评:本题的关键是求出半径BH的长,然后利用扇形面积公式就可求.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案