【题目】已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连结AD.
(1)求证:AD是∠BAC的平分线;
(2)若AC=3,BC=4,求⊙O的半径.
【答案】(1)证明见解析(2)
【解析】试题分析:
(1)连接OD,由⊙O与BC边相切于点D可得∠ODB=∠C=90°,从而可得OD∥AC,由此即可得到∠CAD=∠ADO,由OD=OA可得∠DAO=∠ODA,即可得到∠CAD=∠DAO,从而得到AD是∠BAC的角平分线;
(2)在Rt△ABC中,由AC=3,BC=4易得AB=5,由tanB=,设OD=3x,则BD=4x,由此在Rt△OBD中可得OB=5x,结合OA=OD=3x可得AB=8x=5,解得x=,即可得到⊙O的半径为: .
试题分析:
(1)如图,连接OD,
∵⊙O与BC边相切于点D,
∴∠ODB=∠C=90°,
∴OD∥AC,
∴∠CAD=∠ADO,
∵OD=OA,
∴∠DAO=∠ODA,
∴∠CAD=∠DAO,
∴AD是∠BAC的角平分线;
(2)∵在Rt△ABC中,由AC=3,BC=4,
∴AB=,
∵tanB=,
∴可设OD=3x,则BD=4x,
∴OB=,
又∵OA=OD=3x,
∴AB=3x+5x=8x=5,解得:x=,
∴⊙O的半径OD=3x=.
科目:初中数学 来源: 题型:
【题目】如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.旨在借用古代丝绸之路的历史符号,高举和平发展的旗帜,积极发展与沿线国家的经济合作.2018年底共开行中欧班列6300列,其中返程班列2690列,实现进出口贸易总额170亿美元.数据170亿用科学计数法表示为,则的值为( )
A.9B.10C.11D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,有两个点,.
(1)若、关于轴对称,则_________________,________________.
(2)若、关于轴对称,则_________________,________________.
(3)若、两点重合,将重合后的点绕原点顺时针旋转,此时点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三位数,十位上的数字是百位上数字的2倍,十位上的数字比个位上的数字大1.
(1)若设百位上的数字为a,则个位数字为 ,这个三位数可表示为 ;
(2)这个三位数能被5整除吗?若能,求出这个三位数;若不能请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广节能灯,为响应号召,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲 | 25 | 30 |
乙 | 45 | 60 |
(1)如何进货,进货款恰好为46000元?
(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(2,1),B(4,5),C(5,2).
(1)请画出△ABC关于y轴对称的△ABC;
(2)画出△ABC关于原点O成中心对称的△ABC;
(3)请你判断△AAA与△CCC的相似比;若不相似,请直接写出△AAA的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点、分别在、轴上,已知点的坐标为,且.
(1) (2) (3)
(1)求的长度;
(2)以为一边作等边,过点作,交的垂直平分线于点.求证:;
(3)在(2)的条件下,连接交于,求证:为的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线相交于点A(m,3),B(-6,n),与x轴交于点C.
(1)求直线y=kx+b(k≠0)的解析式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标(直接写出结果).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com