精英家教网 > 初中数学 > 题目详情
(2006•安顺)如图,在直角坐标系中有一条圆弧经过网格点(横坐标、纵坐标均为整数的点)A、B、C,其中B点的坐标为(-2,2),则该圆弧所在圆的圆心的坐标为   
【答案】分析:根据已知条件和两点间距离公式,较易求出圆心坐标.
解答:解:如图所示,B(2,-2),C(0,2).
∴A(-3,1),B(0,2),
设圆点坐标为(x,y),圆心在BC的垂直平分线上,则x=-1.
又∵圆心在线段AB的垂直平分线上,即到A与B的距离相等.则
=
=
∴x=-2,y=0,
∴圆心坐标为(-2,0).
点评:本题用到的知识点为:两点间距离公式.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(10)(解析版) 题型:解答题

(2006•安顺)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一元二次方程》(07)(解析版) 题型:解答题

(2006•安顺)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年贵州省安顺市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•安顺)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年贵州省安顺市中考数学试卷(课标卷)(解析版) 题型:填空题

(2006•安顺)如图,在△ABC中,点D、E在BC上,且AB=AC,请补充一个条件:    ,使得△ABD≌△ACE.

查看答案和解析>>

同步练习册答案