精英家教网 > 初中数学 > 题目详情

证明:平行四边形一条对角线的两个端点与另一条对角线的距离相等.(正确画图,写出已知、求证、证明)

答案:
解析:

证明略


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:梯形ABCD中,AD∥BC,∠ABC=60°且BC=8,梯形ABCD绕点A顺时针旋转a度后得到梯形AEFG,a为锐角.
(1)如图一,旋转过程中,若线段AB与线段EF始终有交点,求a的范围;
(2)如图二,若B点落在线段EF上,小刚同学用三角板量得F、G和D三点在同一条直线上,由此,他得到四边形ABFG是平行四边形,你能证明吗?请写出理由;
(3)小刚最后又发现中的平行四边形ABFG是菱形,请求出梯形ABCD的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源:中华题王 数学 九年级上 (北师大版) 北师大版 题型:059

四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质,只要善于观察、乐于探索,我们会发现更多的结论.问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个小三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形——平行四边形中,研究这个问题:已知:在ABCD中,O是对角线BD上任意一点(如图①)求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出一般四边形(如图②)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点.(如图②)

求证:________.

证明:

(3)在三角形中(如图③),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:044

对四边形的观察与探索

  四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.

  问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形--平行四边形中,研究这个问题:

已知:在ABCD中,O是对角线BD上任意一点(如图),求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出在一般四边形(如图)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点(如图)

求证:________________

(3)在三角形中(如图),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:双基培养与训练 初中二年级下册 几何 题型:047

证明:平行四边形一条对角线的两个端点与另一条对角线的距离相等.(正确画图,写出已知、求证、证明)

查看答案和解析>>

同步练习册答案