精英家教网 > 初中数学 > 题目详情

【题目】已知:四边形 ABCD 内接于⊙O,连接 ACBD,∠BAD+2ACB=180°

1)如图 1,求证:点 A 为弧 BD 的中点;

2)如图 2,点 E 为弦 BD 上一点,延长 BA 至点 F,使得 AF=AB,连接 FE AD 于点 P,过点 P PHAF 于点 HAF=2AH+AP,求证:AH:AB=PE:BE

3)在(2)的条件下,如图 3,连接 AE,并延长 AE 交⊙O 于点 M,连接 CM,并延长 CM AD 的延长线于点 N,连接 FD,∠MND=MEDDF=12sinACBMN=,求 AH 的长.

【答案】1)见解析;(2)见解析;(3

【解析】

1)根据圆的内接四边形的性质可得∠BAD+BCD=180°,然后结合已知条件即可证出∠ACB=ACD,从而证出结论;

2)在HF上取点G,使HG=HA,连接PGAE,根据垂直平分线的性质可得AP=GP,结合已知条件可得,GP=GF,结合三线合一证出EABF,再证出EAPH,根据平行线分线段成比例定理和等量代换即可得出结论;

3)连接MBMD,先利用等角对等边证出MN=MD=,然后证出△BDF为直角三角形,∠BDF=90°,即可得出BF=12,然后证出△AFM∽△DFB,列出比例式即可求出DF,再根据勾股定理即可求出BDBM,设AH=x,再利用相似三角形的判定及性质列出比例式即可求出结论.

解:(1)∵四边形 ABCD 内接于⊙O

∴∠BAD+BCD=180°

∵∠BAD+2ACB=180°

∴∠BCD=2ACB

∴∠ACB=ACD

即点 A 为弧 BD 的中点;

2)在HF上取点G,使HG=HA,连接PGAE

PHAF

PH垂直平分AG

AP=GP

∴∠PAG=PGA

∴∠ADB=ABD

∴∠PAG=ADB+∠ABD=2ABD

AF=2AH+APAF=AHHGGF=2AHGF

AP=GF

GP=GF

∴∠GPF=F

∴∠PGA=GPF+∠F=2F

∴∠ABD=F

EB=EF

AF=AB

EABF

EAPH

AHAF = PEEF

AH:AB=PE:BE

3)连接MBMD

MN=MD=

AB=AF

AB=AD=AF

∴∠ABD=ADB,∠ADF=AFD

∴∠ABD+∠AFD=ADB+∠ADF=BDF

∴△BDF为直角三角形,∠BDF=90°

BF=12

AB=AD=AF=6

由(2)知:∠EAB=90°

∴∠MDB=90°

∴∠MDB+∠BDF=180°

MDF三点共线

∵∠AFM=DFB,∠FAM=FDB=90°

∴△AFM∽△DFB

解得:DF=-10(不符合实际,舍去)

根据勾股定理可得BD=

BM=

AH=x,由(2)知:AP=AF2AH=62x

由圆的内角四边形的性质可得:∠PAH=BMD

∵∠AHP=MDB=90°

∴△AHP∽△MDB

解得:x=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1x2

(1)求k的取值范围;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,ABACADBC边上的中线,点EAD上一点,过点BBFEC,交AD的延长线于点F,连接BECF

1)求证:BDF≌△CDE

2)当EDBC满足什么数量关系时,四边形BECF是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段AB6cm,过点B做射线BF且满足∠ABF40°,点C为线段AB中点,点P为射线BF上的动点,连接PA,过点BPA的平行线交射线PC于点D,设PB的长度为xcmPD的长度为y1cmBD的长度为y2cm.(当点P与点B重合时,y1y2的值均为6cm

小腾根据学习函数的经验,分别对函数y1y2随自变量x的变化而变化的规律进行了探究.

下面是小腾的探究过程,请补充完整:

1)按照下表中自变量x 0≤x≤6)的值进行取点、画图、测量,分别得到了y1y2x的几组对应值:

x/cm

0

1

2

3

4

5

6

y1/cm

6.0

4.7

3.9

4.1

5.1

6.6

8.4

y2/cm

6.0

5.3

4.7

4.2

3.9

4.1

(说明:补全表格时相关数值保留一位小数)

2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(xy1),(xy2),并画出y1y2的图象;

3)结合函数图象解决问题:当PDB为等腰三角形时,则BP的长度约为   cm

4)当x6时,是否存在x的值使得PDB为等腰三角形   (填或者).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC 为等腰直角三角形,∠ACB90°,点 M AB 边的中点,点 N 为射线 AC 上一点,连接 BN,过点 C CDBN 于点 D,连接 MD,作∠BNE=∠BNA,边 EN 交射线 MD 于点 E,若 AB20MD14,则 NE 的长为___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P3cm/s的速度向点B移动,一直到达B为止,点Q2cm/s的速度向D移动.

(1)P、Q两点从出发开始到几秒时,四边形APQD为长方形?

(2)P、Q两点从出发开始到几秒时?四边形PBCQ的面积为33cm2

(3)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点A80)、B60).将线段OB绕着原点O逆时针方向旋转角度αOC,连接AC.将AC绕着点A顺时针方向旋转角度βAD,连接OD

1)当α30°,β60°时,求OD的长

2)当α60°,β120°时,求OD的长

3)已知E100),当β90°时,改变的大小,求ED的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.

学生参与“朗读”的态度统计表

类别

人数

所占百分比

18

20

4

合计

请你根据以上信息,解答下列问题:

1____________,并将条形统计图补充完整;

2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?

3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数y=的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BAx轴于点A,连接PA,PB,OB,已知SAOB=SPAB

(1)求k的值和点B的坐标.

(2)求直线BP的解析式.

(3)直接写出在第一象限内,使反比例函数大于一次函数的x的取值范围是   

查看答案和解析>>

同步练习册答案