【题目】阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题:在Rt△ABC中,∠C=90°,∠B=22.5°,则tan22.5°=
小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题.于是小天尝试着在CB边上截取CD=CA,连接AD(如图2),通过构造有特殊角(45°)的直角三角形,经过推理和计算使问题得到解决.
(1)请回答:tan22.5°= .
(2)解决问题:
如图3,在等腰△ABC中,AB=AC,∠A=30°,请借助△ABC构造出15°的角,并计算tan15°值.
【答案】(1)(2)2-
【解析】试题分析:(1)设AC=CD=x,根据勾股定理求出AD,然后根据等角对等边证明BD=AD,进而根据正切函数的定义求出即可;
(2)延长BA至D,使AD=AB,作CH⊥AB于H,设CH=x,根据直角三角形的性质得到DH=2x+x,根据正切的概念计算.
试题解析:
解:(1)在CB边上截取CD=CA,连接AD,
则∠ADC=∠DAC=45°,
设AC=x,则CD=x,
由勾股定理得,AD==x,
∵∠ADC=45°,∠B=22.5°,
∴∠BAD=∠B,
∴DA=DB=x,
则BC=(+1)x,
tan22.5°=tanB==﹣1,
故答案为:﹣1;
(2)延长BA至D,使AD=AB,作CH⊥AB于H,
∵AB=AC,
∴AD=AC,
∴∠ACD=∠D=∠A=15°,
设CH=x,
∵∠CAH=30°,
∴AC=2CH=2x,
∴AD=2x,
由勾股定理得,AH==x,
∴DH=2x+x,
则tan15°==2﹣.
科目:初中数学 来源: 题型:
【题目】某市为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)此次共调查了多少名学生?
(2)将条形统计图补充完整,并计算扇形统计图中“A”部分所对应的圆心角的度数.
(3)该市九年级共有8000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=1,BC=2,点E在AD上,且ED=2AE.
(1)求证:△ABC∽△EAB.
(2)AC与BE交于点H,求HC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果过抛物线与y的交点作y轴的垂线与该抛物线有另一个交点,并且这两点与该抛物线的顶点构成正三角形,那么我们称这个抛物线为正三角抛物线.
(1)抛物线 正三角抛物线;(填“是”或“不是”)
(2)如图,已知二次函数(m > 0)的图像是正三角抛物线,它与x轴交于A、B两点(点A在点B的左侧),点E在y轴上,当∠AEB=2∠ABE时,求出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为庆祝重庆八中建校八十周年,学校要举行一系列的庆祝活动. 庆祝活动的主要方式有四种,分别是A:“我与八中同成长”诗歌征文比赛、B:“舞动八中”街舞比赛、C:“水墨校园”绘画比赛、D:“历史名人cosplay”比赛. 学校围绕“你最喜欢的活动方式是什么?”在全校学生中随机抽样部分学生进行调查(四个选项中必须且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:
“最喜欢的活动方式”条形统计图 “最喜欢的活动方式”扇形统计图
(1)本次抽查的学生共_______人,m=__________,并将条形统计图补充完成;
(2)学校采用抽签方式让每班在A,B,C,D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是A和B的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于两个两位数m和n,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(m,n)。例如:当m=36,n=10时,将m十位上的3放置n中1与0之间,将m个位上的6位置于n中0的右边,得到1306.将n个十位上的1放置于m中3和6之间,将n个位上的0放置于m中6的右边,得到3160。这两个新四位数的和为1306+3160=4466,4466÷11=406,所以F(36,10)=406。
(1)计算:F(20,18);
(2)若a=10+x,b=10y+8(0≤x≤9,1≤y≤9,x,y都是自然数)。当150 F(a,36)+ F(b,49)=62767时,求F(5a,b)的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题:
(一)小明在玩积木时,把三个正方体积木摆成一定的形状,正面看如图①所示:
(1)若图中的△DEF为直角三角形,∠DEF=90°,正方形P的面积为9,正方形Q的面积为15,则正方形M的面积为________;
(2)若P的面积为36cm,Q的面积为64cm,同时M的面积为100cm,则△DEF为________三角形.
(二)图形变化:如图②,分别以直角三角形ABC(∠ACB=90°)的三边为直径向三角形外作三个半圆,你能找出这三个半圆的面积S1、S2、S3之间有什么关系吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com