精英家教网 > 初中数学 > 题目详情
如图,已知正方形的边长是4cm,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)
设正方形外接圆,内切圆的半径分别为R,r,
如图,连接OE、OA,
则OA2-OE2=AE2,即R2-r2=(
AB
2
2=(
4
2
2=4,
S圆环=S大圆-S小圆=πR2-πr2,(2分)
=π(R2-r2),(3分)
∵R2-r2=(
4
2
2=4,(5分)
∴S=4π(cm2). (6分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

写出一种与图中不同的圆和圆的位置关系:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,AB=4,0为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙02,则图中阴影部分的面积=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,若⊙O的半径为
2
,则BF的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O是正六边形ABCDEF的外接圆,⊙O的半径是2,则正六边形ABCDEF的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1、图2分别是两个相同正方形、正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处.
(1)求图1中,重叠部分面积与阴影部分面积之比;
(2)求图2中,重叠部分面积与阴影部分面积之比(直接出答案);
(3)根据前面探索和图3,你能否将本题推广到一般的正n边形情况,(n为大于2的偶数)若能,写出推广问题和结论;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O中,C是弧AB上的一点,∠AOC=100°,则∠ABC的度数是(  )
A.80°B.100°C.120°D.130°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,
AD
=
BE
=
CF
,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,四边形ABCD是⊙O的内接四边形,A是弧BD的中点,过A点的切线与CB的延长线交于点E.
(1)求证:AB•DA=CD•BE;
(2)若点E在CB延长线上运动,点A在弧BD上运动,使切线EA变为割线EFA,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)

查看答案和解析>>

同步练习册答案