精英家教网 > 初中数学 > 题目详情
24、如图,△ABC中,AB=AC,点M、N分别在BC所在直线上,且AM=AN.
请问:BM=CN吗?请说明理由.
分析:利用全等三角形的判定与性质及等腰三角形的性质就可证明BM=CN.
解答:解:BM=CN.
理由:∵AB=AC,
∴∠B=∠C,
又∵AM=AN,
∴∠AMN=∠ANM,
∴∠AMB=∠ANC,
∴△ABM≌△ACN,
∴BM=CN.
点评:此题主要考查了学生全等三角形的判定与性质,做这道题的关键是利用等腰三角形的底角相等,再转化为邻补角相等,证明三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案