精英家教网 > 初中数学 > 题目详情
3.下列二次根式中,是最简二次根式的是(  )
A.$\sqrt{12}$B.$\sqrt{3}$C.$\sqrt{\frac{1}{2}}$D.$\sqrt{{a}^{2}b}$

分析 判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.

解答 解:A、$\sqrt{12}$=2$\sqrt{3}$,$\sqrt{12}$不是最简二次根式;
B、3不能再开方,$\sqrt{3}$是最简二次根式;
C、$\sqrt{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,$\sqrt{\frac{1}{2}}$不是最简二次根式;
D、$\sqrt{{a}^{2}b}$=|a|$\sqrt{b}$,$\sqrt{{a}^{2}b}$不是最简二次根式.
故选B.

点评 本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:
(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,不经过原点的直线与双曲线y=$\frac{k}{x}$相交于点A(m,2),B(n,-1),其中m>0,n<0.
(1)求m与n之间的数量关系;
(2)若OA=OB,求该双曲线和直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列方程组中是二元一次方程组的是(  )
A.$\left\{\begin{array}{l}{\frac{x}{2}+\frac{y}{3}=6}\\{x=4}\end{array}\right.$B.$\left\{\begin{array}{l}{2x+z=0}\\{3x-y=\frac{1}{5}}\end{array}\right.$C.$\left\{\begin{array}{l}{\frac{1}{x}+y=5}\\{2x-5y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x+y=3}\\{xy=1}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足$\sqrt{a+b-32}$+|b-a+16|=0,将B向左平移18个单位得到点C.
(1)求点A、B、C的坐标;
(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A以2个三位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).
①当BM=ON时,求t的值;
②是否存在一段时间,使得S四边形NACM<$\frac{1}{2}$S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,已知AB∥CD,EF⊥CD,若∠1=125°,则∠2的度数为(  )
A.55°B.65°C.25°D.35°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知反比例函数y=$\frac{3}{x}$,在此函数图象上的点是(  )
A.(-1,1)B.(1,1)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知一次函数y=kx+b的图象经过点(1,-2),(3,2).若该图象分别交x轴,y轴于A、B两点,O为坐标原点,求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.给出下列命题:
(1)三角形的一个外角一定大于它的一个内角
(2)若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形
(3)三角形的最小内角不能大于60°
(4)三角形的一个外角等于和它不相邻的两个内角的和
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有(  )
组别月用水量x(单位:吨)
A0≤x<3
B3≤x<6
C6≤x<9
D9≤x<12
Ex>12
A.18户B.20户C.22户D.24户

查看答案和解析>>

同步练习册答案