精英家教网 > 初中数学 > 题目详情

如图1,将一块圆心角为120°的半径足够长的扇形纸板的圆心放在边长为a面积为S1的正三角形的中心O点,并将纸板绕点O旋转,请计算正三角形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积.
探索:
(1)如图2,将纸板的圆心角变为90°,正三角形变为正方形(边长为a面积为S2),试求出正方形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积;
(2)观察图3,根据上面解题时获得的经验与体会,提出相似的问题,并写出解决的过程;
(3)由此可以猜测如下的一般结论:______.(只写结论,不用证明)

解:连接OA,OC,
∴∠COA=∠OCD=∠OCA=30°,
∵DOE=120°,∠AOC==120°,
∴∠DOE=∠AOC,
∴∠DOC=∠AOE
∵OA=OC,
∴△AOE≌△COD,
∴CD=AE,
∴CD+CE=AE+CE=AC=a,
S四边形ODCE=S△AOC=S△ABC=S1

(1)连接OC,OD,
∴∠ECO=∠OCF=45°,
∵∠EOF=90°,∠COF==90°,
∴∠EOF=∠COF,
∴∠EOC=∠DOF,
又∵OC=OD,
∴△DOF≌△COE,
∴CE=DF,
∴CE+CF=FD+CF=CD=a,
S四边形OECF=S△DOC=S四边形ABCD=S2

(2)将纸板的圆心角变为72°,正三角形变为正五边形(边长为a面积为S3),试求出正五边形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积.
连接OE,OA,同样可得△AOG≌△EOF,
∴FE=AG,
∴S四边形ODCE=S△AOE=S五边形ABCDE=S3

(3)将一块圆心角为的半径足够长的扇形纸板的圆心放在边长为a面积为S的正n边形的中心O点,并将纸板绕点O旋转,正n边形的边被纸板覆盖部分的总长度为边长a,图中重叠阴影部分的面积为
分析:连接OA,OC,那么OA=OC,易得∠DOC=∠AOE=120°-∠EOC,∠COA=∠OCD=30°,可证△AOE≌△COD,利用全等三角形的对应线段相等,面积相等,将问题转化.
(1)同法可得CE+CF=CD=a;S四边形OECF=S△DOC=S四边形ABCD=S2
(2)同法可得EF+EG=AE=a,S四边形ODCE=S△AOE=S五边形ABCDE=S3
(3)综上所述,将一块圆心角为°的半径足够长的扇形纸板的圆心放在边长为a面积为S的正n边形的中心O点,并将纸板绕点O旋转,正n边形的边被纸板覆盖部分的总长度为边长a,图中重叠阴影部分的面积为
点评:应利用全等把所求的线段和面积转换为容易算出的线段和图形的面积,注意类比方法的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,将一块圆心角为120°的半径足够长的扇形纸板的圆心放在边长为a面积为S1的正三角形的中心O点,并将纸板绕点O旋转,请计算正三角形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积.
探索:
(1)如图2,将纸板的圆心角变为90°,正三角形变为正方形(边长为a面积为S2),试求出正方形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积;
(2)观察图3,根据上面解题时获得的经验与体会,提出相似的问题,并写出解决的过程;
(3)由此可以猜测如下的一般结论:
 
.(只写结论,不用证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源:2009年山东省临沂市中考数学模拟试卷(解析版) 题型:解答题

(2009•潘集区模拟)如图1,将一块圆心角为120°的半径足够长的扇形纸板的圆心放在边长为a面积为S1的正三角形的中心O点,并将纸板绕点O旋转,请计算正三角形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积.
探索:
(1)如图2,将纸板的圆心角变为90°,正三角形变为正方形(边长为a面积为S2),试求出正方形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积;
(2)观察图3,根据上面解题时获得的经验与体会,提出相似的问题,并写出解决的过程;
(3)由此可以猜测如下的一般结论:______.(只写结论,不用证明)

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学模拟试卷(一)(解析版) 题型:解答题

(2009•潘集区模拟)如图1,将一块圆心角为120°的半径足够长的扇形纸板的圆心放在边长为a面积为S1的正三角形的中心O点,并将纸板绕点O旋转,请计算正三角形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积.
探索:
(1)如图2,将纸板的圆心角变为90°,正三角形变为正方形(边长为a面积为S2),试求出正方形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积;
(2)观察图3,根据上面解题时获得的经验与体会,提出相似的问题,并写出解决的过程;
(3)由此可以猜测如下的一般结论:______.(只写结论,不用证明)

查看答案和解析>>

科目:初中数学 来源:2009年安徽省淮南市潘集区九年级(下)第七次联考数学试卷(解析版) 题型:解答题

(2009•潘集区模拟)如图1,将一块圆心角为120°的半径足够长的扇形纸板的圆心放在边长为a面积为S1的正三角形的中心O点,并将纸板绕点O旋转,请计算正三角形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积.
探索:
(1)如图2,将纸板的圆心角变为90°,正三角形变为正方形(边长为a面积为S2),试求出正方形的边被纸板覆盖部分的总长度和图中重叠阴影部分的面积;
(2)观察图3,根据上面解题时获得的经验与体会,提出相似的问题,并写出解决的过程;
(3)由此可以猜测如下的一般结论:______.(只写结论,不用证明)

查看答案和解析>>

同步练习册答案