精英家教网 > 初中数学 > 题目详情

复习课中,教师给出关于x的函数(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.

①真,②假,③假,④真,理由和所用的数学方法见解析.

解析试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断.
试题解析:①真,②假,③假,④真.理由如下:
①将(1,0)代入,得,解得.
∴存在函数,其图像经过(1,0)点.
∴结论①为真.
②举反例如,当时,函数的图象与坐标轴只有两个不同的交点.∴结论②为假.
③∵当时,二次函数(k是实数)的对称轴为
∴可举反例如,当时,二次函数为
时,y随x的增大而减小;当时,y随x的增大而增大.
∴结论③为假.
④∵当时,二次函数的最值为
∴当时,有最小值,最小值为负;当时,有最大值,最大值为正.
∴结论④为真.
解决问题时所用的数学方法有方程思想,特殊与一般思想,反证思想,分类思想
考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(-1,0),E(0,3).
(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=-x2+bx+c与x轴交于点A(1,0)、C,交y轴于点B,对称轴x=-1与x轴交于点D.
(1)求该抛物线的解析式和B、C点的坐标;
(2)设点P(x,y)是第二象限内该抛物线上的一个动点,△PBD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;

(3)点G在x轴负半轴上,且∠GAB=∠GBA,求G的坐标;
(4)若此抛物线上有一点Q,满足∠QCA=∠ABO,若存在,求直线QC的解析式;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=x2+bx+c经过A(-1, 0)、B(4, 5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
(1)当点N落在AB边上时,t的值为   ,当点N落在AC边上时,t的值为   
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒 个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数(m是常数)
(1)求证:不论m为何值,该函数的图像与x轴没有公共点;
(2)把该函数的图像沿x轴向下平移多少个单位长度后,得到的函数的图像与x轴只有一个公共点?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线的图象过点C(0,1),顶点为Q(2,3)点D在x轴正半轴上,且线段OD=OC
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数y=ax2+2ax+b的图象与x轴交于点A、B,与y轴交于点C(0,),其顶点在直线y=-2x上.
(1)求a,b的值;
(2)写出当-2≤x≤2时,二次函数y的取值范围;
(3)以AC、CB为一组邻边作□ACBD,则点D关于x轴的对称点D’是否在该二次函数的图象上?请说明理由.

查看答案和解析>>

同步练习册答案